
Notions of Computability

• Many notions of computability have been
proposed, e.g.
– (Type 0 a.k.a. Unrestricted or context sensitive)

Grammars
– Partial Recursive Functions
– Lambda calculus
– Markov Algorithms
– Post Algorithms
– Post Canonical Systems,

• • All have been shown equivalent to Turing
machines by simulation proofs

Systems we’ll study

• Context Sensitive Grammars
• Primitive Recursive Functions
• Partial recursive functions

Context Sensitive Grammars

• We can extend the notion of context-free
grammars to a more general mechanism

• An (unrestricted) grammar G = (V,Σ,R,S) is just like
a CFG except that rules in R can take the more
general form α→β where α,β are arbitrary strings
of terminals and variables. α must contain at
least one variable (or nontermial).

• If α→β then uαv ⇒ uβv (“yields”) in one step
• Define ⇒* (“derives”) as reflexive transitive

closure of ⇒.

Classical not-context free language
• { anbncn | n ≥ 0 }

 S -> aSBC
S -> aBC
CB -> HB
HB -> HC
aB -> ab
bB -> bb
bC -> bc
cC -> cc

Example: {a2^n , n ≥ 0}
• Hereʼs a set of grammar rules
1. S → a
2. S→ ACaB
3. Ca → aaC
4. CB → DB
5. CB → E
6. aD → Da
7. AD →AC
8. aE → Ea
9. AE → Λ

Try generating 23 a’s
S
ACaB
AaaCB
AaaDB
AaDaB
ADaaB
ACaaB
AaaCaB
AaaaaCB
AaaaaDB

(Unrestricted) Grammars
and Turing machines have

equivalent power

• For any grammar G we can find a TM M such
that L(M) = L(G).

• For any TM M, we can find a grammar G such
that L(G) = L(M).

Computation using Numerical Functions

• Weʼre used to thinking about computation as
something we do with numbers (e.g. on the
natural numbers)

• What kinds of functions from numbers to
numbers can we actually compute?

• To study this, we make a very careful selection
of building blocks

Primitive Recursive Functions

• The primitive recursive functions from ℕ x ℕ x ...
x ℕ → ℕ are those built from these primitives:
– zero(x) = 0
– succ(x) = x+1
– π k,j (x1,x2,...,xk) = xj for 0 < j ≤ k

• using these mechanisms:

– Function composition, and
– Primitive recursion

Function Composition

• Define a new function f in terms of functions h
and g1, g2, ..., gm as follows:
f(x1,...xn) = h(g1(x1,...,xn), ... ,gm(x1,...,xn))

Note that f and gi have arity n but that h has arity m

 Example: f(x) = x + 3 can be expressed using two

compositions as f (x) = succ(succ(succ(x)))

Primitive Recursion
• Primitive recursion defines a new function f in terms of functions h

and g as follows:

• f(0,x1, ..., xk) = h(x1,...,xk)
• f(Succ(n),x1, ..., xk)= g(n, f(n,x1,...,xk), x1,...,xk)

Note that the order of arguments here differs slightly from the order in

the Hein book (page 832). Here we place the number being analyzed
first rather than last.

Many ordinary functions can be defined using primitive recursion, e.g.

add(0,x) = π1,1(x)
add(Succ(y),x) = succ(π3,3(y, add(y,x),x))

More P.R. Functions
• For simplicity, we omit projection functions and write 0 for zero(_) and 1 for

succ(0)

add(x,0) = x
add(x,succ(y)) = succ(add(x,y))

mult(x,0) = 0
mult(x,succ(y)) = add(x,mult(x,y))

factorial(0) = 1
factorial(succ(n)) = mult(succ(n),factorial(n))

exp(n,0) = 1
exp(n, succ(n)) = mult(n,exp(n,m))

pred(0) = 0
pred(succ(n)) = n

• Essentially all practically useful arithmetic functions are primitive recursive, but...

Ackermannʼs Function is not
Primitive Recursive

• A famous example of a function that is clearly
well-defined but not primitive recursive

A(m, n)=

 if m0 then n+1

 else if n=0 then A(m–1, 1)

 else A(m–1, A(m,n–1))

This function grows extremely fast!

A is not primitive recursive

• Ackermannʼs function grows faster than any
primitive recursive function, that is:

• for any primitive recursive function f, there is an n
such that

• A(n, x) > f x

• So A canʼt be primitive recursive

An Algebra of PR functions

• A grammar for well formed term PR terms
 Term → Z
 | S
 | P N nth projection

 | C Term [Term1, … ,Termn] composition

 | PR Term Term primitive recursion

• N → 1 | 2 | 3 | 4 | …

Example 1

• Equations
• f(x) = succ(succ(succ(x)))

• Algebra
• F = C S [C S [S]]

 Term → Z
 | S
 | P N nth projection
 | C Term [Term1, … ,Termn] composition
 | PR Term Term primitive recursion

Example 2

• Equations
add(0,x) = x

add(succ(y),x) = succ(add(y,x))
• Algebra
add = PR (P 1) (C S [P 2])

 Term → Z
 | S
 | P N nth projection
 | C Term [Term1, … ,Termn] composition
 | PR Term Term primitive recursion

f(0,x1, ..., xk) = h(x1,...,xk)
f(Succ(n),x1, ..., xk)= g(n, f(n,x1,...,xk), x1,...,xk)

Example 3

• Equations
pred Zero = Zero

pred (Succ n) = n
• Algebra
pred = PR Z (P 1)

 Term → Z
 | S
 | P N nth projection
 | C Term [Term1, … ,Termn] composition
 | PR Term Term primitive recursion

f(0,x1, ..., xk) = h(x1,...,xk)
f(Succ(n),x1, ..., xk)= g(n, f(n,x1,...,xk), x1,...,xk)

Example 4

• Equations
monus Zero x = x

monus (Succ n) x = pred(monus n x)

minus x y = monus y x

• Algebra
minus = C (PR (P 1)

 (C pred [P 2]))

 [P 2, P 1]

f(0,x1, ..., xk) = h(x1,...,xk)
f(Succ(n),x1, ..., xk)= g(n, f(n,x1,...,xk), x1,...,xk)

 Term → Z
 | S
 | P N
 | C Term [Term1, … ,Termn]
 | PR Term Term

Summary

• The algebra denotes functions by combining
other functions.

• The simplest functions: Z, S, P n are trivial
• Yet by using

– Composition - C Term [Term1, … ,Termn]
– Primitive recursion - PR Term Term

Many other functions can be built
• Almost every function we use can be built this

way

Sanity Check
• We can check if a term in the algebra is a function of n

arguments

check Z _ = True
check S 1 = True
check (P n) m = n <= m
check (C f gs) n =
 check f (length gs) &&
 (all (\g -> check g n) gs)
check (PR g h) n =
 check g (n-1) && check h (n+1)

Partial Recursive Functions

• A belongs to class of partial recursive functions,
a superset of the primitive recursive functions.

• Can be built from primitive recursive operators &
new minimization operator
– Let g be a (k+1)-argument function.
– Define f(x1,...,xk) as the smallest m such that

g(x1,...,xk,m) = 0 (if such an m exists)
– Otherwise, f(x1,...,xn) is undefined
– We write f(x1,...,xk) = μm.[g(x1,...,xk,m) = 0]
– Example: μm.[mult(n,m) = 0] = zero(_)

Turing-computable functions

• To formalize the connection between partial
recursive functions and Turing machines,
mathematicians have described how to use TMʼs
to compute functions on ℕ.

• We say a function f : ℕ x ℕ x ... x ℕ → ℕ is Turing-
computable if there exists a TM that, when
started in configuration q01n1⊔1n2⊔...⊔1nk, halts
with just 1f(n1,n2,...nk) on the tape.

• Fact: f is Turing-computable iff it is partial
recursive.

	Notions of Computability
	Systems we’ll study
	Context Sensitive Grammars
	Classical not-context free language
	Example: {a2^n , n ≥ 0}
	(Unrestricted) Grammars�and Turing machines have�equivalent power
	Computation using Numerical Functions
	Primitive Recursive Functions
	Function Composition
	Primitive Recursion
	More P.R. Functions
	Ackermannʼs Function is not�Primitive Recursive
	This function grows extremely fast!
	A is not primitive recursive
	An Algebra of PR functions
	Example 1
	Example 2
	Example 3
	Example 4
	Summary
	Sanity Check
	Partial Recursive Functions
	Slide Number 23
	Turing-computable functions

