
Notions of Computability 

• Many notions of computability have been 
proposed, e.g. 
– (Type 0 a.k.a. Unrestricted or context sensitive) 

Grammars 
–  Partial Recursive Functions 
–  Lambda calculus 
– Markov Algorithms 
– Post Algorithms 
– Post Canonical Systems,  

• • All have been shown equivalent to Turing 
machines by simulation proofs 



Systems we’ll study 

• Context Sensitive Grammars 
• Primitive Recursive Functions 
• Partial recursive functions 



Context Sensitive Grammars 

• We can extend the notion of context-free 
grammars to a more general mechanism 

• An (unrestricted) grammar G = (V,Σ,R,S) is just like 
a CFG except that rules in R can take the more 
general form α→β where α,β are arbitrary strings 
of terminals and variables.  α must contain at 
least one variable (or nontermial). 

• If α→β then uαv ⇒ uβv (“yields”) in one step 
• Define ⇒* (“derives”) as reflexive transitive 

closure of ⇒. 



Classical not-context free language 
• { anbncn   |  n  ≥ 0 } 

 
 S -> aSBC 
S -> aBC 
CB -> HB 
HB -> HC 
aB -> ab 
bB -> bb 
bC -> bc 
cC -> cc 



Example: {a2^n , n ≥ 0} 
• Hereʼs a set of grammar rules 
1.  S → a 
2.  S→ ACaB 
3. Ca → aaC 
4. CB → DB 
5. CB → E 
6. aD → Da 
7. AD →AC 
8. aE → Ea 
9.  AE → Λ 

 

Try generating 23 a’s 
S 
ACaB 
AaaCB 
AaaDB 
AaDaB 
ADaaB 
ACaaB 
AaaCaB 
AaaaaCB 
AaaaaDB 
 



(Unrestricted) Grammars 
and Turing machines have 

equivalent power 

• For any grammar G we can find a TM M such 
that L(M) = L(G). 

• For any TM M, we can find a grammar G such 
that L(G) = L(M). 



Computation using Numerical Functions 

• Weʼre used to thinking about computation as 
something we do with numbers (e.g. on the 
natural numbers) 
 

• What kinds of functions from numbers to 
numbers can we actually compute? 
 

• To study this, we make a very careful selection 
of building blocks 



Primitive Recursive Functions 

• The primitive recursive functions from ℕ x ℕ x ... 
x ℕ → ℕ are those built from these primitives: 
– zero(x) = 0  
– succ(x) = x+1 
– π k,j (x1,x2,...,xk) = xj for 0 < j ≤ k 

 
• using these mechanisms: 

– Function composition, and 
– Primitive recursion 



Function Composition 

• Define a new function f in terms of functions h 
and g1, g2, ..., gm as follows: 
f(x1,...xn) = h( g1(x1,...,xn), ... ,gm(x1,...,xn) ) 
 
Note that f and gi have arity n but that h has arity m 

 
 Example: f(x) = x + 3 can be expressed using two 

compositions as f (x) = succ(succ(succ(x))) 



Primitive Recursion 
• Primitive recursion defines a new function f in terms of functions h 

and g as follows: 
 

• f(0,x1, ..., xk) = h(x1,...,xk) 
• f(Succ(n),x1, ..., xk)= g(n, f(n,x1,...,xk), x1,...,xk) 

 
Note that the order of arguments here differs slightly from the order in 

the Hein book (page 832). Here we place the number being analyzed 
first rather than last. 

 
Many ordinary functions can be defined using primitive recursion, e.g. 

add(0,x) = π1,1(x) 
add(Succ(y),x) = succ(π3,3(y, add(y,x),x)) 

 



More P.R. Functions 
• For simplicity, we omit projection functions and write 0 for zero(_) and 1 for 

succ(0) 
 

add(x,0) = x  
add(x,succ(y)) = succ(add(x,y)) 
 
mult(x,0) = 0  
mult(x,succ(y)) = add(x,mult(x,y)) 
 
factorial(0) = 1  
factorial(succ(n)) =  mult(succ(n),factorial(n)) 
 
exp(n,0) = 1  
exp(n, succ(n)) = mult(n,exp(n,m)) 
 
pred(0) = 0  
pred(succ(n)) = n 
 
•  Essentially all practically useful arithmetic functions are primitive recursive, but... 



Ackermannʼs Function is not 
Primitive Recursive 

• A famous example of a function that is clearly 
well-defined but not primitive recursive 

 

A(m, n)=  

  if m0 then n+1 

  else if n=0 then A(m–1, 1) 

  else A(m–1, A(m,n–1)) 
 



This function grows extremely fast! 



A is not primitive recursive 

• Ackermannʼs function grows faster than any 
primitive recursive function, that is: 
 

• for any primitive recursive function f, there is an n 
such that 
 

•  A(n, x) > f x 
 

• So A canʼt be primitive recursive 



An Algebra of PR functions 

• A grammar for well formed term PR terms 
 Term  → Z 
            |   S  
            |   P N                                                nth projection 

            |   C  Term  [ Term1, … ,Termn ]      composition 

            |   PR  Term  Term                    primitive recursion 

 
• N → 1 | 2 | 3 | 4 | … 



Example 1 

• Equations 
• f(x) = succ(succ(succ(x))) 

 
• Algebra 
• F = C S [C S [S]] 

 Term  → Z 
            |   S  
            |   P N                                                nth projection 
            |   C  Term  [ Term1, … ,Termn ]      composition 
            |   PR  Term  Term                    primitive recursion 
 



Example 2 

• Equations 
add(0,x) = x  

add(succ(y),x) = succ(add(y,x)) 
• Algebra 
add = PR (P 1) (C S [P 2]) 

 Term  → Z 
            |   S  
            |   P N                                                nth projection 
            |   C  Term  [ Term1, … ,Termn ]      composition 
            |   PR  Term  Term                    primitive recursion 
 

f(0,x1, ..., xk) = h(x1,...,xk) 
f(Succ(n),x1, ..., xk)= g(n, f(n,x1,...,xk), x1,...,xk) 



Example 3 

• Equations 
pred Zero = Zero 

pred (Succ n) = n 
• Algebra 
pred = PR Z (P 1) 

 Term  → Z 
            |   S  
            |   P N                                                nth projection 
            |   C  Term  [ Term1, … ,Termn ]      composition 
            |   PR  Term  Term                    primitive recursion 
 

f(0,x1, ..., xk) = h(x1,...,xk) 
f(Succ(n),x1, ..., xk)= g(n, f(n,x1,...,xk), x1,...,xk) 



Example 4 

• Equations 
monus Zero x = x 

monus (Succ n) x = pred(monus n x) 

minus x y = monus y x 

 
• Algebra 
minus = C (PR (P 1)  

              (C pred [P 2]))  

          [P 2, P 1] 

f(0,x1, ..., xk) = h(x1,...,xk) 
f(Succ(n),x1, ..., xk)= g(n, f(n,x1,...,xk), x1,...,xk) 

 Term  → Z 
            |   S  
            |   P N                                                
            |   C  Term  [ Term1, … ,Termn ]  
            |   PR  Term  Term    



Summary 

• The algebra denotes functions by combining 
other functions. 

• The simplest functions:  Z, S, P n   are trivial 
• Yet by using  

– Composition -       C  Term  [ Term1, … ,Termn ] 
– Primitive recursion -       PR  Term  Term  

Many other functions can be built 
• Almost every function we use can be built this 

way 



Sanity Check 
• We can check if a term in the algebra is a function of n 

arguments 
 

check Z _ = True 
check S 1 = True 
check (P n) m = n <= m 
check (C f gs) n =  
  check f (length gs) &&  
  (all (\g -> check g n) gs) 
check (PR g h) n =  
  check g (n-1) && check h (n+1) 



Partial Recursive Functions 

• A belongs to class of partial recursive functions, 
a superset of the primitive recursive functions. 

• Can be built from primitive recursive operators & 
new minimization operator 
– Let g be a (k+1)-argument function. 
– Define f(x1,...,xk) as the smallest m such that 

g(x1,...,xk,m) = 0        (if such an m exists) 
– Otherwise, f(x1,...,xn) is undefined 
– We write f(x1,...,xk) = μm.[g(x1,...,xk,m) = 0] 
– Example: μm.[mult(n,m) = 0] = zero(_) 

 





Turing-computable functions 

• To formalize the connection between partial 
recursive functions and Turing machines, 
mathematicians  have described how to use TMʼs 
to compute functions on ℕ. 

• We say a function f : ℕ x ℕ x ... x ℕ → ℕ is Turing-
computable if there exists a TM that, when 
started in configuration q01n1⊔1n2⊔...⊔1nk, halts 
with just 1f(n1,n2,...nk) on the tape. 

• Fact: f is Turing-computable iff it is partial 
recursive. 
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