CS 311 Computational Structures

Scheme

Profs Tim Sheard and Andrew Black

Overview

Scheme is a Turing-complete programming
language

Scheme uses the same structures to represent
both programs and data: S-expressions

Scheme has a simple semantics, based upon the
lambda calculus

Scheme is expressive enough to write a universal
machine.

We will write such a machine in the guise of an
interpreter for Scheme written in Scheme

History

e Lispis the second-oldest |
programming language sti
In current use.

— Invented by John McCarthy
in 1958

— Published in Comm. ACM in
April 1960

e 2 current dialects:
— Common Lisp
— Scheme

Recursive Fune tions of Symbolie 1 Xpressions angd
Their (.umpul.llmn by Machine, Part |

dons MeCamouy, Massaek

CUFEYiLig
* Advice
il peguire.

syatarn for
\E reprosenting formlize
Fibemies 0o that the Advies

ipulating ex-

divlnetinng,

we TIR1 704
anad it Do
with

KT
alled S-funetions,
It this artiele, we first e
Teane

v formalism for clefining

»
Ehe thear

e eal role of an intp o
epreseutation of S-expressions i
IBAT Tou v

I"
 TBA Ting, \L\l: AT LN
PUtsivns with syl

eationnl oquan i
conditional pxpressiog h: the form

e, oo py e

® o)

itional expressio
expressons of any kind, ft may be orend, C17 py e

Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part |

dows MeCanrny, Massackusetfs Frstitute of Technology, Casbridpe, Wags,

1. Fesh roscdueetion

A programming system enlled LISP (for LISE Proeesang)
bns been developed for the TRM 704 eomputer by the
Artificial Lotelligense group st M.IT. The system was
designed to favilitute experiments with o propossd system
called the Advies Twker, wheeshy o muchine ooubd be
instructed to hamdbe declirative as well e nperutive
sentonoes and could exhibit “common semse’™ B careying
ot ik il ruclione. lhe uﬂl,uml pru-pcul (0] e thee A vies
Taker was madp | & TN IELH.II[‘!

In the eonirse of its development the Lise system went,
through several stages of smplifieation and eventunlly
cama to be hased on a scheme for representing the partinl
reqursive functions of o eertain elass of symbolie expres.
giomg. This representation is independent of the [BA 704
computer, or of any other electronie computber, and it now
seems expedient to expound the systom by suarting with
thw class of cxpressions called S-expressions and the fune-
Lions ealled S-funetions,

In this wriicle, weo first describe & formaliso for defining
Cuneet toms recursively. We bolieve this formalism hss wd-
vanloges both ws & programming language and s vebiclo
for developing a theory of mnpututinu Neoxt, we describe

ressicns and S-functions, give some m:umplms. ;
ilae the universal I“-I-i'|.1m'-|',m||1. apply whis

TRAL T0H Jay st ui.rucLum! mmllnrinﬂm mi'r.@' Mowell,
Bhaw and Simaon (2], and the represeatation of B-funciions

hisr rumneeases Thavs mea miawmiiias ke rmanta Tacbiinses oF iha

2, Functions and Funetion Delnitions

We shall need o number of mathematical idese and
nolations eoncerning functions in gewersl. Maost of ihe
bilens s well kiwwn, but the notion of condilional erpees.
ein im belioved o be pew, and the use of conditics)
exprussinne permils unetions te be definsd meeursively ina
new anid convenient way.

m, Papitel Funcliens, A partind Tunetion ia a funelion
that is defined only oo part of its domain. Partial funelios
essarily arise wlen Tunctions are defined by compuiz.
tions beenuse for sane values of Uwe argomonts the sempa-
fnticny delining the value of the funetion may we e
nate. Flowever, some of our ebmontary fanelons will be
& partiol functions,
aifiwial Frpreastons ond Prodieetes. A propos-
sl = nb expresaton whose possible valos
thil and T {for falsicy). We shall asume
is familine with the propositional connee.
, W (o), ol ~ ("nep Typial
aaigaLE et

are T
thnt the
tivies i :
pripasitLon

Xy

(x <y} Alb=a)

% Qs primee

i= 0 funetion whoss range consists of the
s T aned T7,

Conditional Frpressions. The dependence of irah

calues on the values of quantities of other kinds i o
prossed in mathematics by predicates, and the dependence
of truth values oo other truth values by logieal connee
Lives. However, the notations for expressing symbolically
the dependence of quuntities of oiher kinds on troh
vilue= ip inadequate, =0 (ot English words ad phruﬁl‘

Scheme

e Scheme developed at MIT by Guy L. Steele
and Gerald Jay Sussman, 1975-1980
e Scheme has a “minimalist” design
— Small core language + mechanisms for extension
 Defined in a de facto standard called the

Revised’ Report on the Algorithmic Language
Scheme (RnRS).

— The most widely implemented standard is R5RS

S-expressions

e S-exps have a simple grammar
S — Atomic | List
List > (Items)
ltems — S ltems | A
Atomic — Symbol | Number | String | Boolean | Procedure
Symbol — symbol i.e. 'X 'yz 'w34
Number — 12.5
String — "abnc" i.e. things inside double quotes
Boolean — #t | #f
Procedure — primitive built in code

Example S-exp

25

car

“abc”

e (cdry)

e (cons 35)

e (14tom7 8)

e (if(>3x)22vy)
e (quote (car x))

Representing atomic data

e Atomic data: data that can’t be broken into parts

4 Data is)
consecutive " "
* 25 words in d bC string
number
memory
25 with a tag abc
. car %—/)
symbol procedure
[
car Data can have +
multiple Executable
components code ...
boolean g
o #f

false

(cons 3 5)

cell

List data

(

List are A

comprised of
“cons cells”
and pointers y

l

symbol

cons

P cell // cell ,,I symbol
i i empty
number number
3 5

S-expressions as programs

Data: "abc", 25

Function calls: “polish notation”
(+37) (<(-xy)23) (reversex)

Control structures: (if (< x5) (g t) (+ 2 x))

Declarations: (define pi(/ 22.0 7.0))

Programs vs. data

e By default, an S-exp is usually interpreted as a
program.

e Programs are (usually) “call-by-value”:
— Every element of the S-exp is evaluated

— The first element is assumed to be a function, which is
then called with the remaining elements as arguments

e (+(+25)2)>(+72)—>9
e S-Exps can also be interpreted as data by quoting

Quoting

e |f a quote precedes an S-exp, asin '(+ 2 3) or
'(4 5 6), then the S-exp following the quote is
interpreted as data.

* A quoted S-exp evaluates to itself

e '(a b q)isshorthand for (quote (a b c))
>'(+ 3 4)

Function calls

* (hzyz)
h — procedure
z — value
y — value
z — value

e The procedure is then applied to all the arguments

(923)
(f1)

Constructing Data

nil

I cell cell cell
C}uotmg —L /1/7
(135) i i |
number | | num ber | | num ber
1 3 5
Dot expressions ”
'3.4)
\ 4 N
number | | num ber
3 4
Cons

(cons 3 (cons4 () —» '(34)

List
(list (+ 3 4) 'abc 9) —» ‘(7 abc 9)

Equality

e Primitive equality on atomic data
— (eq? xYy) arexandythe same object?

e Structural equality
— (equal? xy) do x andy have the same structure?

> (eq? 'a'a)

#t
>(eq?'(12)'(12)
#i

>(equal? '(1 2) '(1 2))
#t

Symbols are unique

e All Symbols with the same name are represented

inside the machine by the same object.
> (eq? 'abc 'abc)
#t
> (eq? "abc" (string-append "ab" "c"))
#f
>(eq? 'abc
(string->symbol (string-append
"ab" "c")))
#t

Control structures

qguote

lambda

cond

define

These are part of the language, not functions

Conditionals
— (cond ((test, exp,)(test, exp,) ...))

Definitions

(define x 25)
(define (f x) (+ x 9))

(define g +)

Anonymous functions

* |n Scheme, one can write anonymous
functions (i.e., functions without a name)

— (lambda (param, ... param,) body)
 Lambdas evaluate to procedures

> (lambda (xy) (+ (+ x 1) y))

#<procedure>

> ((lambda (xy) (+ (+x1)y)) 57)
13

Local binding
e let and let*

(define (f x)

(let ((y 1)
(z 3))
(+ XYy 2))) Later
bindings can
see earlier

(define (f x)
(let* ((y 1)
(z (+y3))
(+xy Z)Ht*

ones

Lexical scoping

* Free variables in anonymous functions see the
closest enclosing definition.

(define x 25)

(define y (let ((x 1))
((lambda (2)

(+ 2 X))
12)))

Functions as arguments

* |In Scheme, one can write functions that take other
functions as arguments.

(define (appl fy)
(cond ((symbol? y) (fy))
((list? y) (cons (f (car y))
(cdr y)))))

> (appl symbol? 'a)

#t

> (appl symbol? '(a b c))
(#tbc)

Important higher order functions

°* map

* apply

>(map (lambda (x) (+ x 3))
'(123))
(45 6)
>(apply string-append
'("abc" "zyz"))
"abczyz"

Summary

Scheme is a simple language without much
syntax

Programs and data have the same
representation

One can write programs that build and
manipulate programs

Functions and arguments are treated the
same (fxvy z)

	Scheme
	Overview
	History
	Slide Number 4
	Scheme
	S-expressions
	Example S-exp
	Representing atomic data
	List data
	S-expressions as programs
	Programs vs. data
	Quoting
	Function calls
	Constructing Data
	Equality
	Symbols are unique
	Control structures
	Definitions
	Anonymous functions
	Local binding
	Lexical scoping
	Functions as arguments
	Important higher order functions
	Summary

