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Overview

Scheme is a Turing-complete programming
language

Scheme uses the same structures to represent
both programs and data: S-expressions

Scheme has a simple semantics, based upon the
lambda calculus

Scheme is expressive enough to write a universal
machine.

We will write such a machine in the guise of an
interpreter for Scheme written in Scheme



History

e Lispis the second-oldest |
programming language sti
In current use.

— Invented by John McCarthy
in 1958

— Published in Comm. ACM in
April 1960

e 2 current dialects:
— Common Lisp
— Scheme
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1. Fesh roscdueetion

A programming system enlled LISP (for LISE Proeesang)
bns been developed for the TRM 704 eomputer by the
Artificial Lotelligense group st M.IT. The system was
designed to favilitute experiments with o propossd system
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Scheme

e Scheme developed at MIT by Guy L. Steele
and Gerald Jay Sussman, 1975-1980
e Scheme has a “minimalist” design
— Small core language + mechanisms for extension
 Defined in a de facto standard called the

Revised’ Report on the Algorithmic Language
Scheme (RnRS).

— The most widely implemented standard is R5RS



S-expressions

e S-exps have a simple grammar
S — Atomic | List
List > ( Items)
ltems — S ltems | A
Atomic — Symbol | Number | String | Boolean | Procedure
Symbol — symbol i.e. 'X 'yz 'w34
Number — 12.5
String — "abnc" i.e. things inside double quotes
Boolean — #t | #f
Procedure — primitive built in code



Example S-exp

25

car

“abc”

e (cdry)

e (cons 35)

e (14tom7 8)

e (if(>3x)22vy)
e (quote (car x))



Representing atomic data

e Atomic data: data that can’t be broken into parts

4 Data is )
consecutive " "
* 25 words in d bC string
number
memory
25 with a tag abc
. car %—/ )
symbol procedure
[
car Data can have +
multiple Executable
components code ...
boolean g
o #f

false




(cons 3 5)

cell

List data

(

List are A

comprised of
“cons cells”
and pointers y

l

symbol

cons

P cell // cell ,,I symbol
i i empty
number number
3 5




S-expressions as programs

Data: "abc", 25

Function calls: “polish notation”
(+37) (<(-xy)23) (reversex)

Control structures: (if (< x5) (g t) (+ 2 x))

Declarations: (define pi(/ 22.0 7.0))



Programs vs. data

e By default, an S-exp is usually interpreted as a
program.

e Programs are (usually) “call-by-value”:
— Every element of the S-exp is evaluated

— The first element is assumed to be a function, which is
then called with the remaining elements as arguments

e (+(+25)2)>(+72)—>9
e S-Exps can also be interpreted as data by quoting



Quoting

e |f a quote precedes an S-exp, asin '(+ 2 3) or
'(4 5 6), then the S-exp following the quote is
interpreted as data.

* A quoted S-exp evaluates to itself

e '(a b q)isshorthand for (quote (a b c))
>'(+ 3 4)



Function calls

* (hzyz)
h — procedure
z — value
y — value
z — value

e The procedure is then applied to all the arguments

(923)
(f1)



Constructing Data

nil

I cell cell cell
C}uotmg —L /1/7
(135) i i |
number | | num ber | | num ber
1 3 5
Dot expressions ”
'3.4)
\ 4 N
number | | num ber
3 4
Cons

(cons 3 (cons4 () —» '(34)

List
(list (+ 3 4) 'abc 9) —» ‘(7 abc 9)




Equality

e Primitive equality on atomic data
— (eq? xYy) arexandythe same object?

e Structural equality
— (equal? xy) do x andy have the same structure?

> (eq? 'a'a)

#t
>(eq?'(12)'(12)
#i

>(equal? '(1 2) '(1 2))
#t



Symbols are unique

e All Symbols with the same name are represented

inside the machine by the same object.
> (eq? 'abc 'abc)
#t
> (eq? "abc" (string-append "ab" "c"))
#f
>(eq? 'abc
(string->symbol (string-append
"ab" "c")))
#t



Control structures

qguote

lambda

cond

define

These are part of the language, not functions

Conditionals
— (cond ((test, exp,)(test, exp,) ... ))



Definitions

(define x 25)
(define (f x) (+ x 9))

(define g +)



Anonymous functions

* |n Scheme, one can write anonymous
functions (i.e., functions without a name)

— (lambda (param, ... param,) body)
 Lambdas evaluate to procedures

> (lambda (xy) (+ (+ x 1) y))

#<procedure>

> ((lambda (xy) (+ (+x1)y)) 57)
13



Local binding
e let and let*

(define (f x)

(let ((y 1)
(z 3))
(+ XYy 2))) Later
bindings can
see earlier

(define (f x)
(let* ((y 1)
(z (+y3))
(+xy Z)Ht*

ones



Lexical scoping

* Free variables in anonymous functions see the
closest enclosing definition.

(define x 25)

(define y (let ((x 1))
((lambda (2)

(+ 2 X))
12)))



Functions as arguments

* |In Scheme, one can write functions that take other
functions as arguments.

(define (appl fy)
(cond ((symbol? y) (fy))
((list? y) (cons (f (car y))
(cdr y)))))

> (appl symbol? 'a)

#t

> (appl symbol? '(a b c))
(#tbc)



Important higher order functions

°* map

* apply

>(map (lambda (x) (+ x 3))
'(123))
(45 6)
>(apply string-append
'("abc" "zyz"))
"abczyz"



Summary

Scheme is a simple language without much
syntax

Programs and data have the same
representation

One can write programs that build and
manipulate programs

Functions and arguments are treated the
same (fxvy z)
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