
Scheme

Profs Tim Sheard and Andrew Black

CS 311 Computational Structures

Overview

• Scheme is a Turing-complete programming
language

• Scheme uses the same structures to represent
both programs and data: S-expressions

• Scheme has a simple semantics, based upon the
lambda calculus

• Scheme is expressive enough to write a universal
machine.

• We will write such a machine in the guise of an
interpreter for Scheme written in Scheme

History

• Lisp is the second-oldest
programming language still
in current use.
– Invented by John McCarthy

in 1958
– Published in Comm. ACM in

April 1960
• 2 current dialects:

– Common Lisp
– Scheme

Scheme

• Scheme developed at MIT by Guy L. Steele
and Gerald Jay Sussman, 1975–1980

• Scheme has a “minimalist” design
– Small core language + mechanisms for extension

• Defined in a de facto standard called the
Revisedn Report on the Algorithmic Language
Scheme (RnRS).
– The most widely implemented standard is R5RS

S-expressions

• S-exps have a simple grammar
S → Atomic | List
List → (Items)
Items → S Items | Λ
Atomic → Symbol | Number | String | Boolean | Procedure
Symbol → symbol i.e. 'X 'yz 'w34
Number → 12.5
String → "abnc" i.e. things inside double quotes
Boolean → #t | #f
Procedure → primitive built in code

Example S-exp

• 25
• car
• “abc”
• (cdr y)
• (cons 3 5)
• (1 4 tom 7 8)
• (if (> 3 x) 22 y)
• (quote (car x))

Representing atomic data

• Atomic data: data that can’t be broken into parts

• 25 "abc"

• car +

• #f

25
 number

car

 symbol

abc

 string

+

 procedure

Executable
code …

Data is
consecutive

words in
memory

with a tag

Data can have
multiple

components

false

 boolean

List data

(cons 3 5)

 cell cell cell

cons

 symbol

3
 number

5
 number

empty

 symbol

List are
comprised of
“cons cells”

and pointers

S-expressions as programs

• Data: "abc", 25

• Function calls: “polish notation”
 (+ 3 7) (< (- x y) 23) (reverse x)

• Control structures: (if (< x 5) (g t) (+ 2 x))

• Declarations: (define pi (/ 22.0 7.0))

Programs vs. data

• By default, an S-exp is usually interpreted as a
program.

• Programs are (usually) “call-by-value”:
– Every element of the S-exp is evaluated
– The first element is assumed to be a function, which is

then called with the remaining elements as arguments
• (+ (+ 2 5) 2) → (+ 7 2) → 9

• S-Exps can also be interpreted as data by quoting

Quoting

• If a quote precedes an S-exp, as in '(+ 2 3) or
'(4 5 6), then the S-exp following the quote is
interpreted as data.

• A quoted S-exp evaluates to itself

• '(a b q) is shorthand for (quote (a b c))
 > '(+ 3 4)

Function calls
• (h z y z)

h → procedure
z → value
y → value
z → value

• The procedure is then applied to all the arguments

(g 2 3)
(f 1)

Constructing Data
• Quoting

'(1 3 5)

• Dot expressions
 '(3 . 4)

• Cons

(cons 3 (cons 4 '())) → '(3 4)

• List
(list (+ 3 4) 'abc 9) → '(7 abc 9)

 cell cell cell

1

 number

3
 number

5
 number

nil

 atom

 cell

3
 number

4
 number

Equality
• Primitive equality on atomic data

– (eq? x y) are x and y the same object?
• Structural equality

– (equal? x y) do x and y have the same structure?

> (eq? 'a 'a)
#t
> (eq? '(1 2) '(1 2))
#f
>(equal? '(1 2) '(1 2))
#t

Symbols are unique

• All Symbols with the same name are represented
inside the machine by the same object.

> (eq? 'abc 'abc)
#t
> (eq? "abc" (string-append "ab" "c"))
#f
>(eq? 'abc
 (string->symbol (string-append
 "ab" "c")))
#t

Control structures

• quote
• lambda
• cond
• define
• These are part of the language, not functions

• Conditionals

– (cond ((test1 exp1)(test2 exp2) …))

Definitions

(define x 25)

(define (f x) (+ x 9))

(define g +)

Anonymous functions

• In Scheme, one can write anonymous
functions (i.e., functions without a name)
– (lambda (param1 … paramn) body)

• Lambdas evaluate to procedures
> (lambda (x y) (+ (+ x 1) y))
#<procedure>
> ((lambda (x y) (+ (+ x 1) y)) 5 7)
13

Local binding

• let and let*

(define (f x)
 (let ((y 1)
 (z 3))
 (+ x y z)))

(define (f x)
 (let* ((y 1)
 (z (+ y 3)))
 (+ x y z)))t*

Later
bindings can
see earlier

ones

Lexical scoping

• Free variables in anonymous functions see the
closest enclosing definition.

(define x 25)

(define y (let ((x 1))
 ((lambda (z)
 (+ z x))
 12)))

Functions as arguments
• In Scheme, one can write functions that take other

functions as arguments.

(define (app1 f y)
 (cond ((symbol? y) (f y))
 ((list? y) (cons (f (car y))
 (cdr y)))))

> (app1 symbol? 'a)
#t
> (app1 symbol? '(a b c))
(#t b c)

Important higher order functions

• map
• apply

>(map (lambda (x) (+ x 3))
 '(1 2 3))
(4 5 6)
>(apply string-append
 '("abc" "zyz"))
"abczyz"

Summary

• Scheme is a simple language without much
syntax

• Programs and data have the same
representation

• One can write programs that build and
manipulate programs

• Functions and arguments are treated the
same (f x y z)

	Scheme
	Overview
	History
	Slide Number 4
	Scheme
	S-expressions
	Example S-exp
	Representing atomic data
	List data
	S-expressions as programs
	Programs vs. data
	Quoting
	Function calls
	Constructing Data
	Equality
	Symbols are unique
	Control structures
	Definitions
	Anonymous functions
	Local binding
	Lexical scoping
	Functions as arguments
	Important higher order functions
	Summary

