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Overview 

• Scheme is a Turing-complete programming 
language 

• Scheme uses the same structures to represent 
both programs and data:  S-expressions 

• Scheme has a simple semantics, based upon the 
lambda calculus 

• Scheme is expressive enough to write a universal 
machine. 

• We will write such a machine in the guise of an 
interpreter for Scheme written in Scheme 



History 

• Lisp is the second-oldest 
programming language still 
in current use. 
– Invented by John McCarthy 

in 1958 
– Published in Comm. ACM in 

April 1960 
• 2 current dialects: 

– Common Lisp 
– Scheme 





Scheme 

• Scheme developed at MIT by Guy L. Steele 
and Gerald Jay Sussman, 1975–1980 

• Scheme has a “minimalist” design 
– Small core language + mechanisms for extension 

• Defined in a de facto standard called the 
Revisedn Report on the Algorithmic Language 
Scheme (RnRS).  
– The most widely implemented standard is R5RS 



S-expressions 

• S-exps have a simple grammar 
S → Atomic | List 
List → ( Items ) 
Items → S Items  |  Λ 
Atomic →  Symbol | Number | String | Boolean | Procedure 
Symbol →  symbol   i.e.  'X  'yz  'w34 
Number → 12.5 
String → "abnc"  i.e. things inside double quotes 
Boolean → #t | #f 
Procedure →  primitive built in code 



Example S-exp 

• 25 
• car 
• “abc” 
• (cdr y) 
• (cons 3 5) 
• (1 4 tom 7 8) 
• (if (> 3 x) 22  y) 
• (quote (car x)) 



Representing atomic data 

• Atomic data: data that can’t be broken into parts 
 

• 25                                                   "abc" 
 
 

• car                                                      + 
 
 

• #f 
 

 

 

25 
   number 

 
car 

   symbol 

 
abc 

   string 

 
+ 

   procedure 

Executable 
code … 

Data is 
consecutive 

words in 
memory 

with a tag 

Data can have 
multiple 

components 

 
false 

   boolean 



List data 
 
(cons 3 5) 
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and pointers 



S-expressions as programs 

• Data:   "abc", 25 
 

• Function calls:  “polish notation”  
           (+ 3 7)       (< (- x y) 23)      (reverse x) 
 

• Control structures:  (if (< x 5) (g t) (+ 2 x)) 
 

• Declarations:  (define pi (/  22.0  7.0)) 



Programs vs. data 

• By default, an S-exp is usually interpreted as a 
program. 

• Programs are (usually) “call-by-value”: 
– Every element of the S-exp is evaluated 
– The first element is assumed to be a function, which is 

then called with the remaining elements as arguments 
• (+ (+ 2 5) 2) → (+ 7 2) → 9 

• S-Exps can also be interpreted as data by quoting 



Quoting 

• If a quote precedes an S-exp, as in   '(+ 2 3) or  
'(4 5 6), then the S-exp following the quote is 
interpreted as data.  

• A quoted S-exp evaluates to itself 
 

• '(a b q) is shorthand for (quote (a b c)) 
  > '(+ 3 4) 



Function calls 
• (h z y z) 

h → procedure 
z → value 
y → value 
z → value 

 
• The procedure is then applied to all the arguments 

 
 
(g 2 3) 
(f 1) 



Constructing Data 
• Quoting 

'(1 3 5) 
 
 

• Dot expressions 
 '(3 . 4) 

 
• Cons 

(cons 3 (cons 4 '())) →   '(3 4) 
 

• List 
(list (+ 3 4) 'abc 9) →  '(7 abc 9) 
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Equality 
• Primitive equality on atomic data 

– (eq?   x y)   are x and y the same object? 
• Structural equality 

– (equal? x y)   do x and y have the same structure? 
 

> (eq? 'a 'a) 
#t 
> (eq? '(1 2) '(1 2)) 
#f 
>(equal? '(1 2) '(1 2)) 
#t 



Symbols  are unique 

• All Symbols with the same name are represented 
inside the machine by the same object. 

> (eq? 'abc 'abc) 
#t 
> (eq? "abc" (string-append "ab" "c")) 
#f 
>(eq? 'abc  
     (string->symbol (string-append   
                        "ab" "c"))) 
#t 



Control structures 

• quote 
• lambda 
• cond   
• define 
• These are part of the language, not functions 

 
• Conditionals 

– (cond ((test1 exp1)(test2 exp2) … )) 



Definitions 

(define x 25) 
 
(define (f x) (+ x 9)) 
 
(define g +) 

 
 



Anonymous functions 

• In Scheme, one can write anonymous 
functions (i.e., functions without a name) 
– (lambda (param1 … paramn) body) 

• Lambdas evaluate to procedures 
> (lambda (x y) (+ (+ x 1) y)) 
#<procedure> 
> ((lambda (x y) (+ (+ x 1) y))  5 7) 
13 



Local binding 

• let   and   let* 
 
(define (f x)  
        (let ((y 1) 
              (z 3))  
             (+ x y z))) 
 
(define (f x)  
        (let* ((y 1) 
               (z (+ y 3)))  
              (+ x y z)))t* 

Later 
bindings can 
see earlier 

ones 



Lexical scoping 

• Free variables in anonymous functions see the 
closest enclosing definition. 
 

(define x 25) 
 
(define y (let ((x 1)) 
               ((lambda (z)  
                        (+ z x))  
                12))) 



Functions as arguments 
• In Scheme, one can write functions that take other 

functions as arguments. 
 
(define (app1 f y) 
    (cond ((symbol? y) (f y)) 
          ((list? y) (cons (f (car y)) 
                           (cdr y))))) 
 
> (app1 symbol? 'a) 
#t 
> (app1 symbol? '(a b c)) 
(#t b c) 
 



Important higher order functions 

• map 
• apply 

 
>(map (lambda (x) (+ x 3))  
      '(1 2 3)) 
(4 5 6) 
>(apply string-append  
        '("abc" "zyz")) 
"abczyz" 



Summary 

• Scheme is a simple language without much 
syntax 

• Programs and data have the same 
representation 

• One can write programs that build and 
manipulate programs 

• Functions and arguments are treated the 
same  (f x y z) 
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