
Mathematical Preliminaries 
(Hein 1.1 and 1.2) 

• Sets are collections in which order of elements and duplication of 
elements do not matter. 
– {1,a,1,1} = {a,a,a,1} = {a,1} 

 
– Notation for membership:  1 ∈ {3,4,5}  

 
– Set-former notation: {x |  P(x) }  is the set of all x which 
– satisfy the property P. 
–  {x  |  x ∈ N and 2 ≥  x ≥ 5 }  
–  {x ∈ N |  2 ≥  x ≥ 5 } 

 
– Often a universe is specified. Then all sets are assumed to be subsets of 

the universe (U ), and the notation  
–      {x |  P(x)}  stands for {x ∈ U | P(x) } 

 
 



Operations on Sets 

• empty set :   ∅ 
• Union: A ∪ B = {x | x  ∈  A  or  x ∈ B} 
• Intersection: A ∩ B = {x | x ∈ A  and  x ∈ B} 
• Difference: A - B = {x | x∈ A   and  x ∉  B} 
• Complement: A =  U - A 



Venn Diagrams 

A 
B 

U 



Laws 

• A  ∪  A=A  
• A  ∪  B=B  ∪  A  
• A  ∪ (B  ∪  C) = (A  ∪  B) ∪  C  
• A  ∪ (B ∩  C) = (A  ∪  B) ∩ (A  ∪  C)  
• A  ∪  B= A  ∩  B  
• A  ∪ ∅ = A  

 
• A ∩  A=A 
• A ∩  B =B ∩  A 
• A ∩ (B ∩  C)=(A ∩  B) ∩  C  
• A ∩ (B  ∪  C)=(A ∩  B) ∪ (A ∩  C) 
• A ∩  B = A  ∪  B 
• A ∩ ∅= ∅ 



Subsets and Powerset 

• A is a subset of B if all elements of A are elements of B as well. 
Notation: A⊆ B. 

•   
• The powerset  P(A) is the set whose elements are all subsets 

of A:  P(A) =  {X |  X⊆ A }. 
•   
• Fact. If A has n elements, then P(A) has 2n 

• elements. 
•   
• In other words, |P(A)| = 2|A| , where |X| denotes the number 

of elements (cardinality) of X. 
 



Proving Equality and non-equality 

• To show that two sets A and B are equal, you need to do two 
proofs: 
– Assume x∈ A and then prove x∈ B 
– Assume x∈ B and then prove x∈ A 

• Example. Prove that P(A∩ B) = P(A) ∩P(B). 
• To prove that two sets A and B are not equal, you need to 

produce a counterexample : an element x that belongs to one 
of the two sets, but does not belong to the other. 

• Example. Prove that P(A∪ B) ≠ P(A) ∪P(B). 
• Counterexample: A={1}, B={2}, X={1,2}. The set X belongs to 

P(A∪ B), but it does not  belong to P(A) ∪ P(B). 



Strings 
(Hein 1.3.3, 3.1.2, 3.2.2) 

• Strings are defined with respect to an alphabet, which is an 
arbitrary finite set of symbols. Example alphabets are {0,1} 
(binary) and ASCII. 

  
• A string over an alphabet Σ is any finite sequence of elements 

of Σ.  
  
• Hello is an ASCII string; 0101011 is a binary string. 
  
• The length of a string w is denoted |w|. The set of all strings 

of length n over Σ is denoted Σn. 
 



More strings 

• Σ0={Λ}, where Λ is the empty string (common 
to all alphabets).  

•   
• Σ* is the set of all strings over Σ: 
•       Σ* = {Λ} ∪ Σ ∪ Σ2 ∪ Σ3 ∪  ...   
•   
• Σ+ is Σ*  with the empty string excluded:  
•      Σ* =  Σ ∪ Σ2 ∪ Σ3 ∪  ...   

 



String concatenation 

•  If u=one and v=two then u • v=onetwo and  
• v • u=twoone. Dot is usually omitted; just write uv for u • v. 
• Laws: 
•   u •  (v • w) = (u • v) • w 
•             u •  Λ = u 
•            Λ • u = u 
•         |u • v| = |u| + |v| 

 
• The nth power of the string u is un = u • u  ...  u, the 

concatenation of n copies of u.  
• E.g.,  One3 = oneoneone . 
•  Note u0=Λ. 



Can you tell the 
difference? 

• There are three things that are sometimes 
confused. 
 

 Λ      − the empty string ( “” ) 
 

∅      − the empty set ( { } ) 
 

{Λ}   − the set with just the empty string as an 
element 



Languages 

• A language over an alphabet Σ is any subset of Σ*. That is, any 
set of strings over Σ.  

  
• Some languages over {0,1}: 

–  {Λ,01,0011,000111, … } 
 

–  The set of all binary representations of prime numbers: 
{10,11,101,111,1011, … } 

 
• Some languages over ASCII: 

– The set of all English words 
– The set of all C programs 

 
 



Language concatenation 

• If L and L' are languages, their concatenation L • L' (often 
denoted LL') is the set  

•        {u • v | u ∈ L  and  v ∈ L‘ }.  
•   
• Example.  {0,00} • {1,11} = {01,011,001,0011}. 
•   
• The nth power Ln of a language L is L • L ...  L, n 
• times. The zero power L0 is the language {Λ}, by definition.  
•   
• Example. {0,00}4={04,05,06,07,08} 

 



Kleene Star 

• Elements of L* are Λ and all strings obtained 
by concatenating a finite number of strings in 
L.  
– L* = L0 ∪ L1 ∪ L2 ∪ L3 ∪ ...  
– L+ = L1 ∪ L2 ∪ L3 ∪ ...   

 
– Note:   L*  = L+  ∪  {Λ} 

• Example. {00,01,10,11}* is the language of all 
even length binary strings.  



Class Exercise 

• Fill in the blanks to define some laws: 
 

L*∪{Λ}   =  _________ 
L+ • {Λ}  = _________ 
{Λ} • {Λ} = _________ 
∅ • L     = _________ 
L* • L*    = _________ 
(L*)*      = _________ 
L • L*     = _________ 
∅ *         = _________ 
{Λ}*       = _________ 
L • L*       = _________ 

 



Mathematical Statements 
(Hein 6.1, 6.2, 6.3, 7.1) 

• Statements are sentences that are true or false: 
– [1.] 0=3 
– [2.] ab  is a substring of  cba  
– [3.] Every square is a rectangle 

 
•   
• Predicates are parameterized statements; they are true or 

false depending on the values of their parameters. 
– [1.]   x>7   and   x<9 
– [2.]   x+y=5   or   x-y=5 
– [3.]   If x=y  then  x^2=y^2 

 
 



Logical Connectives 

• Logical connectives produce new statements 
from simple ones: 
– Conjunction;   A ∧ B;      A and B 
– Disjunction;    A ∨ B;      A or B 
– Implication;    A ⇒ B;     if  A  then  B 
– Negation;       ¬ A          not A 
– Logical equivalence; A ⇔ B 
–                              A if and only if B 
–                              A iff B 

 



Quantifiers 

• The universal quantifier  (∀  “for every”) and the existential 
quantifier  ( ∃  “there exists”) turn predicates into other predicates 
or statements. 
– There exists x such that x+7=8. 
– For every  x,  x+y > y. 
– Every square is a rectangle. 

 
• Example. True or false? 

– (∀ x)(∀ y)  x+y=y 
– (∀ x)( ∃  y)  x+y=y 
– ( ∃  x)(∀ y)  x+y=y 
– (∀ y)( ∃  x)  x+y=y 
– ( ∃  y)(∀ x)  x+y=y 
– ( ∃  x)( ∃  y) x+y=y 

 



Proofs  
(Hein 1.1, 1.2, 4.4, 7.1) 

• There are many ways to structure proofs 
– Implications 
– Proof by contradiction 
– Proof by exhaustive case analysis 
– Proof by induction 

You should be able to use all these techniques 



Proving Implications 
• Most theorems are stated in the form of (universally 

quantified) implication:   if A, then B 
• To prove it, we assume that A is true and proceed to derive 

the truth of B by using logical reasoning and known facts.  
•  Silly Theorem. If 0=3 then 5=11. 
• Proof. Assume 0=3. Then 0=6 (why?). Then 5=11 (why?).  

 
• Note the implicit universal quantification in theorems: 
•  Theorem A.  If x+7=13, then x^2=x+20. 
•  Theorem B. If all strings in a language  L  have even length, 

then all strings in L* have even length. 



Converse 
(Hein 1.1) 

• The converse of the implication A ⇒ B is the implication B ⇒ A. It is 
quite possible that one of these implications is true, while the other 
is false.  

•         E.g.,  0=1 ⇒  1=1   is true,  
•         but    1=1 ⇒  0=1   is false.  

 
– Note that the implication A ⇒ B is true in all cases except when A is true 

and  B is false.  
•   
• To prove an equivalence A ⇔  B, we need to prove a pair of 

converse implications:  
–  (1) A⇒  B, 
–  (2) B⇒  A. 

 



Contrapositive 
(Hein 1.1) 

•  The contrapositive  of the implication A ⇒ B is the 
implication ¬ B ⇒ ¬ A. If one of these  implications is 
true, then so is the other. It is often more convenient 
to prove the contrapositive! 

 
•  Example. If L1 and L2 are non-empty languages such 

that L1
* = L2

*   then  L1=L2. 
 

• Proof. Prove the contrapositive instead. Assume L1 ≠  
L2. Let w be the shortest possible non-empty string that 
belongs to one of these languages and does not belong 
to the other (e.g.  w ∈ L1 and w ∉ L2). Then w ∈ L1

* and 
it remains to prove w ∉ L2

*. [Finish the proof. Why is 
the assumption that L1,L2≠ ∅  necessary?]  



Reductio ad absurdum- Proof by Contradiction  

•  Often, to prove A ⇒ B, we assume both A and ¬ B, 
and then proceed to derive something absurd 
(obviously non-true). 

•   
• Example. If L is a finite language and L • L =L, then L=∅ 

or L={Λ}. 
•  Proof. Assume L is finite, L • L =L, L≠ ∅ , and L≠ {Λ}. 

Let w be a string in L of maximum length. The 
assumptions imply that |w|>0. Since w2 ∈ L2, we must 
have w2 ∈ L. But |w2|=2|w|>|w|, so L contains strings 
longer than w. Contradiction.  

• qed 
•   
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