
Mathematical Preliminaries
(Hein 1.1 and 1.2)

• Sets are collections in which order of elements and duplication of
elements do not matter.
– {1,a,1,1} = {a,a,a,1} = {a,1}

– Notation for membership: 1 ∈ {3,4,5}

– Set-former notation: {x | P(x) } is the set of all x which
– satisfy the property P.
– {x | x ∈ N and 2 ≥ x ≥ 5 }
– {x ∈ N | 2 ≥ x ≥ 5 }

– Often a universe is specified. Then all sets are assumed to be subsets of

the universe (U), and the notation
– {x | P(x)} stands for {x ∈ U | P(x) }

Operations on Sets

• empty set : ∅
• Union: A ∪ B = {x | x ∈ A or x ∈ B}
• Intersection: A ∩ B = {x | x ∈ A and x ∈ B}
• Difference: A - B = {x | x∈ A and x ∉ B}
• Complement: A = U - A

Venn Diagrams

A
B

U

Laws

• A ∪ A=A
• A ∪ B=B ∪ A
• A ∪ (B ∪ C) = (A ∪ B) ∪ C
• A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
• A ∪ B= A ∩ B
• A ∪ ∅ = A

• A ∩ A=A
• A ∩ B =B ∩ A
• A ∩ (B ∩ C)=(A ∩ B) ∩ C
• A ∩ (B ∪ C)=(A ∩ B) ∪ (A ∩ C)
• A ∩ B = A ∪ B
• A ∩ ∅= ∅

Subsets and Powerset

• A is a subset of B if all elements of A are elements of B as well.
Notation: A⊆ B.

•
• The powerset P(A) is the set whose elements are all subsets

of A: P(A) = {X | X⊆ A }.
•
• Fact. If A has n elements, then P(A) has 2n

• elements.
•
• In other words, |P(A)| = 2|A| , where |X| denotes the number

of elements (cardinality) of X.

Proving Equality and non-equality

• To show that two sets A and B are equal, you need to do two
proofs:
– Assume x∈ A and then prove x∈ B
– Assume x∈ B and then prove x∈ A

• Example. Prove that P(A∩ B) = P(A) ∩P(B).
• To prove that two sets A and B are not equal, you need to

produce a counterexample : an element x that belongs to one
of the two sets, but does not belong to the other.

• Example. Prove that P(A∪ B) ≠ P(A) ∪P(B).
• Counterexample: A={1}, B={2}, X={1,2}. The set X belongs to

P(A∪ B), but it does not belong to P(A) ∪ P(B).

Strings
(Hein 1.3.3, 3.1.2, 3.2.2)

• Strings are defined with respect to an alphabet, which is an
arbitrary finite set of symbols. Example alphabets are {0,1}
(binary) and ASCII.

• A string over an alphabet Σ is any finite sequence of elements

of Σ.

• Hello is an ASCII string; 0101011 is a binary string.

• The length of a string w is denoted |w|. The set of all strings

of length n over Σ is denoted Σn.

More strings

• Σ0={Λ}, where Λ is the empty string (common
to all alphabets).

•
• Σ* is the set of all strings over Σ:
• Σ* = {Λ} ∪ Σ ∪ Σ2 ∪ Σ3 ∪ ...
•
• Σ+ is Σ* with the empty string excluded:
• Σ* = Σ ∪ Σ2 ∪ Σ3 ∪ ...

String concatenation

• If u=one and v=two then u • v=onetwo and
• v • u=twoone. Dot is usually omitted; just write uv for u • v.
• Laws:
• u • (v • w) = (u • v) • w
• u • Λ = u
• Λ • u = u
• |u • v| = |u| + |v|

• The nth power of the string u is un = u • u ... u, the

concatenation of n copies of u.
• E.g., One3 = oneoneone .
• Note u0=Λ.

Can you tell the
difference?

• There are three things that are sometimes
confused.

 Λ − the empty string (“”)

∅ − the empty set ({ })

{Λ} − the set with just the empty string as an
element

Languages

• A language over an alphabet Σ is any subset of Σ*. That is, any
set of strings over Σ.

• Some languages over {0,1}:

– {Λ,01,0011,000111, … }

– The set of all binary representations of prime numbers:
{10,11,101,111,1011, … }

• Some languages over ASCII:

– The set of all English words
– The set of all C programs

Language concatenation

• If L and L' are languages, their concatenation L • L' (often
denoted LL') is the set

• {u • v | u ∈ L and v ∈ L‘ }.
•
• Example. {0,00} • {1,11} = {01,011,001,0011}.
•
• The nth power Ln of a language L is L • L ... L, n
• times. The zero power L0 is the language {Λ}, by definition.
•
• Example. {0,00}4={04,05,06,07,08}

Kleene Star

• Elements of L* are Λ and all strings obtained
by concatenating a finite number of strings in
L.
– L* = L0 ∪ L1 ∪ L2 ∪ L3 ∪ ...
– L+ = L1 ∪ L2 ∪ L3 ∪ ...

– Note: L* = L+ ∪ {Λ}

• Example. {00,01,10,11}* is the language of all
even length binary strings.

Class Exercise

• Fill in the blanks to define some laws:

L*∪{Λ} = _________
L+ • {Λ} = _________
{Λ} • {Λ} = _________
∅ • L = _________
L* • L* = _________
(L*)* = _________
L • L* = _________
∅ * = _________
{Λ}* = _________
L • L* = _________

Mathematical Statements
(Hein 6.1, 6.2, 6.3, 7.1)

• Statements are sentences that are true or false:
– [1.] 0=3
– [2.] ab is a substring of cba
– [3.] Every square is a rectangle

•
• Predicates are parameterized statements; they are true or

false depending on the values of their parameters.
– [1.] x>7 and x<9
– [2.] x+y=5 or x-y=5
– [3.] If x=y then x^2=y^2

Logical Connectives

• Logical connectives produce new statements
from simple ones:
– Conjunction; A ∧ B; A and B
– Disjunction; A ∨ B; A or B
– Implication; A ⇒ B; if A then B
– Negation; ¬ A not A
– Logical equivalence; A ⇔ B
– A if and only if B
– A iff B

Quantifiers

• The universal quantifier (∀ “for every”) and the existential
quantifier (∃ “there exists”) turn predicates into other predicates
or statements.
– There exists x such that x+7=8.
– For every x, x+y > y.
– Every square is a rectangle.

• Example. True or false?

– (∀ x)(∀ y) x+y=y
– (∀ x)(∃ y) x+y=y
– (∃ x)(∀ y) x+y=y
– (∀ y)(∃ x) x+y=y
– (∃ y)(∀ x) x+y=y
– (∃ x)(∃ y) x+y=y

Proofs
(Hein 1.1, 1.2, 4.4, 7.1)

• There are many ways to structure proofs
– Implications
– Proof by contradiction
– Proof by exhaustive case analysis
– Proof by induction

You should be able to use all these techniques

Proving Implications
• Most theorems are stated in the form of (universally

quantified) implication: if A, then B
• To prove it, we assume that A is true and proceed to derive

the truth of B by using logical reasoning and known facts.
• Silly Theorem. If 0=3 then 5=11.
• Proof. Assume 0=3. Then 0=6 (why?). Then 5=11 (why?).

• Note the implicit universal quantification in theorems:
• Theorem A. If x+7=13, then x^2=x+20.
• Theorem B. If all strings in a language L have even length,

then all strings in L* have even length.

Converse
(Hein 1.1)

• The converse of the implication A ⇒ B is the implication B ⇒ A. It is
quite possible that one of these implications is true, while the other
is false.

• E.g., 0=1 ⇒ 1=1 is true,
• but 1=1 ⇒ 0=1 is false.

– Note that the implication A ⇒ B is true in all cases except when A is true

and B is false.
•
• To prove an equivalence A ⇔ B, we need to prove a pair of

converse implications:
– (1) A⇒ B,
– (2) B⇒ A.

Contrapositive
(Hein 1.1)

• The contrapositive of the implication A ⇒ B is the
implication ¬ B ⇒ ¬ A. If one of these implications is
true, then so is the other. It is often more convenient
to prove the contrapositive!

• Example. If L1 and L2 are non-empty languages such

that L1
* = L2

* then L1=L2.

• Proof. Prove the contrapositive instead. Assume L1 ≠
L2. Let w be the shortest possible non-empty string that
belongs to one of these languages and does not belong
to the other (e.g. w ∈ L1 and w ∉ L2). Then w ∈ L1

* and
it remains to prove w ∉ L2

*. [Finish the proof. Why is
the assumption that L1,L2≠ ∅ necessary?]

Reductio ad absurdum- Proof by Contradiction

• Often, to prove A ⇒ B, we assume both A and ¬ B,
and then proceed to derive something absurd
(obviously non-true).

•
• Example. If L is a finite language and L • L =L, then L=∅

or L={Λ}.
• Proof. Assume L is finite, L • L =L, L≠ ∅ , and L≠ {Λ}.

Let w be a string in L of maximum length. The
assumptions imply that |w|>0. Since w2 ∈ L2, we must
have w2 ∈ L. But |w2|=2|w|>|w|, so L contains strings
longer than w. Contradiction.

• qed
•

	Mathematical Preliminaries�(Hein 1.1 and 1.2)
	Operations on Sets
	Venn Diagrams
	Laws
	Subsets and Powerset
	Proving Equality and non-equality
	Strings�(Hein 1.3.3, 3.1.2, 3.2.2)
	More strings
	String concatenation
	Can you tell the difference?
	Languages
	Language concatenation
	Kleene Star
	Class Exercise
	Mathematical Statements�(Hein 6.1, 6.2, 6.3, 7.1)
	Logical Connectives
	Quantifiers
	Proofs �(Hein 1.1, 1.2, 4.4, 7.1)
	Proving Implications
	Converse (Hein 1.1)
	Contrapositive�(Hein 1.1)
	Reductio ad absurdum- Proof by Contradiction

