Mathematical Preliminaries

(Hein 1.1 and 1.2)

- Sets are collections in which order of elements and duplication of elements do not matter.
$-\{1, a, 1,1\}=\{a, a, a, 1\}=\{a, 1\}$
- Notation for membership: $1 \in\{3,4,5\}$
- Set-former notation: $\{x \mid P(x)\}$ is the set of all x which
- satisfy the property P.
$-\{x \mid x \in N$ and $2 \geq x \geq 5\}$
$-\{x \in N \mid 2 \geq x \geq 5\}$
- Often a universe is specified. Then all sets are assumed to be subsets of the universe (U), and the notation
- $\quad\{x \mid P(x)\}$ stands for $\{x \in U \mid P(x)\}$

Operations on Sets

- empty set :
- Union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$
- Intersection: $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- Difference: $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Complement: $\underline{A}=U-A$

Venn Diagrams

Laws

- $A \cup A=A$
- $A \cup B=B \cup A$
- $A \cup(B \cup C)=(A \cup B) \cup C$
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
- $A \cup B=A \cap \underline{B}$
- $A \cap A=A$
- $A \cap B=B \cap A$
- $A \cap(B \cap C)=(A \cap B) \cap C$
- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
- $\frac{A \cap B}{A \cap \varnothing}=\bar{A} \cup \underline{B}$

Subsets and Powerset

- A is a subset of B if all elements of A are elements of B as well. Notation: $A \subseteq B$.
- The powerset $P(A)$ is the set whose elements are all subsets of $A: P(A)=\{X \mid X \subseteq A\}$.
- Fact. If A has n elements, then $\mathrm{P}(\mathrm{A})$ has 2^{n}
- elements.
- In other words, $|\mathrm{P}(\mathrm{A})|=2^{|\mathrm{A}|}$, where $|\mathrm{X}|$ denotes the number of elements (cardinality) of X.

Proving Equality and non-equality

- To show that two sets A and B are equal, you need to do two proofs:
- Assume $x \in A$ and then prove $x \in B$
- Assume $x \in B$ and then prove $x \in A$
- Example. Prove that $P(A \cap B)=P(A) \cap P(B)$.
- To prove that two sets A and B are not equal, you need to produce a counterexample : an element x that belongs to one of the two sets, but does not belong to the other.
- Example. Prove that $P(A \cup B) \neq P(A) \cup P(B)$.
- Counterexample: $A=\{1\}, B=\{2\}, X=\{1,2\}$. The set X belongs to $P(A \cup B)$, but it does not belong to $P(A) \cup P(B)$.

Strings

(Hein 1.3.3, 3.1.2, 3.2.2)

- Strings are defined with respect to an alphabet, which is an arbitrary finite set of symbols. Example alphabets are $\{0,1\}$ (binary) and ASCII.
- A string over an alphabet Σ is any finite sequence of elements of Σ.
- Hello is an ASCII string; 0101011 is a binary string.
- The length of a string w is denoted $|w|$. The set of all strings of length n over Σ is denoted Σ^{n}.

More strings

- $\Sigma^{0}=\{\Lambda\}$, where Λ is the empty string (common to all alphabets).
- Σ^{*} is the set of all strings over Σ :
- $\quad \Sigma^{*}=\{\Lambda\} \cup \Sigma \cup \Sigma^{2} \cup \Sigma^{3} \cup \ldots$
- Σ^{+}is Σ^{*} with the empty string excluded:

$$
\Sigma^{*}=\Sigma \cup \Sigma^{2} \cup \Sigma^{3} \cup \ldots
$$

String concatenation

- If $u=o n e$ and $v=t w o$ then $u \bullet v=o n e t w o$ and
- $v \bullet u=$ twoone. Dot is usually omitted; just write uv for $u \bullet v$.
- Laws:
- $u \bullet(v \bullet w)=(u \bullet v) \bullet w$
- $u \bullet \Lambda=u$
- $\quad \Lambda \bullet u=u$
$\bullet \quad|u \cdot v|=|u|+|v|$
- The $\mathrm{n}^{\text {th }}$ power of the string u is $\mathrm{u}^{\mathrm{n}}=\mathrm{u} \bullet \mathrm{u} \ldots \mathrm{u}$, the concatenation of n copies of u.
- E.g., One ${ }^{3}=$ oneoneone .
- Note $u^{0}=\Lambda$.

Can you tell the difference?

- There are three things that are sometimes confused.
Λ - the empty string ("")
$\varnothing \quad$ - the empty set ($\}$)
$\{\Lambda\}$ - the set with just the empty string as an element

Languages

- A language over an alphabet Σ is any subset of Σ^{*}. That is, any set of strings over Σ.
- Some languages over $\{0,1\}$:
- \{ $\Lambda, 01,0011,000111, \ldots\}$
- The set of all binary representations of prime numbers: \{10,11,101,111,1011, ... \}
- Some languages over ASCII:
- The set of all English words
- The set of all C programs

Language concatenation

- If L and L ' are languages, their concatenation $L \bullet L^{\prime}$ (often denoted $L L^{\prime}$) is the set
- $\quad\left\{u \bullet v \mid u \in L\right.$ and $\left.v \in L^{\prime}\right\}$.
- Example. $\{0,00\} \bullet\{1,11\}=\{01,011,001,0011\}$.
- The $\mathrm{n}^{\text {th }}$ power L^{n} of a language L is $\mathrm{L} \bullet \mathrm{L} \ldots \mathrm{L}, \mathrm{n}$
- times. The zero power L^{0} is the language $\{\Lambda\}$, by definition.
- Example. $\{0,00\}^{4}=\left\{0^{4}, 0^{5}, 0^{6}, 0^{7}, 0^{8}\right\}$

Kleene Star

- Elements of L^{*} are Λ and all strings obtained by concatenating a finite number of strings in L.
$-L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup L^{3} \cup \ldots$
$-L^{+}=L^{1} \cup L^{2} \cup L^{3} \cup \ldots$
- Note: $L^{*}=L^{+} \cup\{\Lambda\}$
- Example. $\{00,01,10,11\}^{*}$ is the language of all even length binary strings.

Class Exercise

- Fill in the blanks to define some laws:

Mathematical Statements (Hein 6.1, 6.2, 6.3, 7.1)

- Statements are sentences that are true or false:
- [1.] 0=3
- [2.] ab is a substring of cba
- [3.] Every square is a rectangle
- Predicates are parameterized statements; they are true or false depending on the values of their parameters.
- [1.] $x>7$ and $x<9$
- [2.] $x+y=5$ or $x-y=5$
- [3.] If $x=y$ then $x^{\wedge} 2=y^{\wedge} 2$

Logical Connectives

- Logical connectives produce new statements from simple ones:
- Conjunction; $A \wedge B ; \quad A$ and B
- Disjunction; $A \vee B ; \quad A$ or B
- Implication; $A \Rightarrow B$; if A then B
- Negation; $\neg A \quad \operatorname{not} A$
- Logical equivalence; $A \Leftrightarrow B$
$\begin{array}{ll}- & A \text { if and } \\ - & A \text { iff } B\end{array}$

Quantifiers

- The universal quantifier (\forall "for every") and the existential quantifier (\exists "there exists") turn predicates into other predicates or statements.
- There exists x such that $x+7=8$.
- For every $x, x+y>y$.
- Every square is a rectangle.
- Example. True or false?
- $(\forall x)(\forall y) x+y=y$
- $(\forall x)(\exists y) x+y=y$
$-(\exists x)(\forall y) x+y=y$
$-(\forall y)(\exists x) x+y=y$
$-(\exists y)(\forall x) x+y=y$
$-(\exists x)(\exists y) x+y=y$

Proofs

(Hein 1.1, 1.2, 4.4, 7.1)

- There are many ways to structure proofs
- Implications
- Proof by contradiction
- Proof by exhaustive case analysis
- Proof by induction

You should be able to use all these techniques

Proving Implications

- Most theorems are stated in the form of (universally quantified) implication: if A, then B
- To prove it, we assume that A is true and proceed to derive the truth of B by using logical reasoning and known facts.
- Silly Theorem. If $0=3$ then $5=11$.
- Proof. Assume $0=3$. Then $0=6$ (why?). Then $5=11$ (why?).
- Note the implicit universal quantification in theorems:
- Theorem A. If $x+7=13$, then $x^{\wedge} 2=x+20$.
- Theorem B. If all strings in a language L have even length, then all strings in L^{*} have even length.

Converse (Hein 1.1)

- The converse of the implication $A \Rightarrow B$ is the implication $B \Rightarrow A$. It is quite possible that one of these implications is true, while the other is false.
- E.g., $0=1 \Rightarrow 1=1$ is true,
- but $1=1 \Rightarrow 0=1$ is false.
- Note that the implication $A \Rightarrow B$ is true in all cases except when A is true and B is false.
- To prove an equivalence $A \Leftrightarrow B$, we need to prove a pair of converse implications:
- (1) $A \Rightarrow B$,
- (2) $B \Rightarrow A$.

Contrapositive

(Hein 1.1)

- The contrapositive of the implication $A \Rightarrow B$ is the implication $\neg B \Rightarrow \neg A$. If one of these implications is true, then so is the other. It is often more convenient to prove the contrapositive!
- Example. If L_{1} and L_{2} are non-empty languages such that $\mathrm{L}_{1}^{*}=\mathrm{L}_{2}{ }^{*}$ then $\mathrm{L}_{1}=\mathrm{L}_{2}$.
- Proof. Prove the contrapositive instead. Assume $L_{1} \neq$ L_{2}. Let w be the shortest possible non-empty string that belongs to one of these languages and does not belong to the other (e.g. $w \in L_{1}$ and $w \notin L_{2}$). Then $w \in L_{1}{ }^{*}$ and it remains to prove $w \notin L_{2}{ }^{*}$. [Finish the proof. Why is the assumption that $\mathrm{L}_{1}, \mathrm{~L}_{2} \neq \varnothing$ necessary?]

Reductio ad absurdum- Proof by Contradiction

- Often, to prove $A \Rightarrow B$, we assume both A and $\neg B$, and then proceed to derive something absurd (obviously non-true).
- Example. If L is a finite language and $L \bullet L=L$, then $L=\varnothing$ or $L=\{\Lambda\}$.
- Proof. Assume L is finite, $L \bullet L=L, L \neq \varnothing$, and $L \neq\{\Lambda\}$. Let w be a string in L of maximum length. The assumptions imply that $|w|>0$. Since $w^{2} \in L^{2}$, we must have $w^{2} \in L$. But $\left|w^{2}\right|=2|w|>|w|$, so L contains strings longer than w. Contradiction.
- qed

