
Turing Machines 



Intro to Turing Machines 

• A Turing Machine (TM) has finite-state control (like PDA), and 
an infinite read-write tape. The tape serves as both input and 
unbounded storage device. 
 

• The tape is divided into cells, and each cell holds one symbol 
from the tape alphabet.  
 

• There is a special blank symbol B. At any instant, all but 
finitely many cells hold B.  
 

• Tape head sees only one cell at any instant. The contents of 
this cell and  the current state determine the next move of the 
TM. 
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Moves 

• A move consists of:  
– replacing the contents of the scanned cell 
– repositioning of the tape head to the nearest cell 

on the left,  or on the right 
– changing the state 

 
• The input alphabet  is a subset of the tape alphabet. Initially, 

the tape holds a string of input symbols (the input), 
surrounded on both sides with in infinite sequence of blanks. 
The initial position of the head is at the first non-blank 
symbol. 
 



Formal Definition 

• A TM is a septuple M=(Q,Σ,Γ,δ,q0,B,F), where 
 
–  Q is a finite set of states  

 
–  Γ is the tape alphabet, and Σ ⊆ Γ is the input alphabet 

 
– B ∈  Γ - Σ is the blank symbol 

 
– q0 ∈ Q is the start state, and F ⊆ Q is the set of accepting states 

 
–  δ : Q × Γ → Q × Γ × {L,R} is a partial function. The value  
of δ (q,X) is either undefined, or is a triple consisting of the new state,  
the  replacement symbol, and direction (left/right) for the head motion. 

 
 



Example 

• Here is a TM that checks its third symbol is 0, 
accepts if so, and runs forever, if not. 
 

• M=({p,q,r,s,t},{0,1,},{0,1,B},p,B,{s}) 
 

• δ(p,X) = (q,X,R)    for X=0,1 
• δ(q,X) = (r,X,R)     for X=0,1 
• δ(r,0) = (s,0,L)  
• δ(r,1) = (t,1,R)  
• δ(t,X) = (t,X,R)      for X=0,1,B 

 
 



δ(p,X) = (q,X,R)    for X=0,1 
δ(q,X) = (r,X,R)     for X=0,1 
δ(r,0) = (s,0,L)  
δ(r,1) = (t,1,R)  
δ(t,X) = (t,X,R)      for X=0,1,B 
 

Transisition Diagrams for TM 

• Pictures of TM can be 
drawn like those for 
PDA's. Here's the TM 
of the example 
below.  
 



Implicit Assumptions 

• Input is placed on tape in contiguous block of 
cells 

• All other cells are blank:  ‘B’ 
• Tape head positioned at Left of input block 
• There is one start state 

 
• The text uses a single Halt state, an alternative is 

to have many final states. These are equivalent, 
why? 



Example 2:  { anbm  | n,m in Nat} 

states         = 0,1,H 
tape alphabet  = a,b,^ 
input alphabet = a,b 
start          = 0 
blank          = ‘^' 
final          = H 
delta =   (0,^,^,S,H) 
               (0,a,a,R,0) 
              (0,b,b,R,1) 
               (1,b,b,R,1) 
              (1,^,^,S,H) 



Example 3:  { anbncn  | n in Nat} 
delta = 
   (0,a,X,R,1) Replace a by X and scan right 
   (0,Y,Y,R,0) Scan right over Y 
   (0,Z,Z,R,4) Scan right over Z, but make final check 
   (0,^,^,S,H) Nothing left, so its success 
   (1,a,a,R,1) Scan right looking for b, skip over a 
   (1,b,Y,R,2) Replace b by y, and scan right 
   (1,Y,Y,R,1) scan right over Y 
   (2,c,Z,L,3) Scan right looking for c, replacxe it by Z 
   (2,b,b,R,2) scan right skipping over b 
   (2,Z,Z,R,2) scan right skipping over Z 
   (3,a,a,L,3) scan left looking for X, skipping over a 
   (3,b,b,L,3) scan left looking for X, skipping over b 
   (3,X,X,R,0) Found an X, move right one cell 
   (3,Y,Y,L,3) scan left over Y 
   (3,Z,Z,L,3) scan left over Z 
   (4,Z,Z,R,4) Scan right looking for ^, skip over Z 
   (4,^,^,S,H) Found what we’re looking for, success! 

tape alphabet  = a,b,c,^,X,Y,Z 
input alphabet = a,b,c 
start          = 0 
blank          = ‘^ ' 
final          = H 
 



aabbcc 
Xabbcc 
XaYbcc 
XaYbZc 
XXYbZc 
XXYYZc 
XXYYZZ 



Turing machines with output 

• A Turing machine can compute an output by 
leaving an answer on the tape when it halts. 
 

• We must specify the form of the output when 
the machine halts. 



Adding two to a number in unary 

states         = 0,1,H 
tape alphabet  = 1,^ 
input alphabet = 1 
start          = 0 
blank          = '^' 
final          = H 
delta = 
   (0,1,1,L,0) 
   (0,^,1,L,1) 
   (1,^,1,S,H) 



Adding 1 to a Binary Number 
states         = 0,1,2,H 
tape alphabet  = 1,0,^ 
input alphabet = 1,0 
start          = 0 
blank          = ‘^ ' 
final          = H 
delta = 
   (0,0,0,R,0) 
   (0,1,1,R,0) 
   (0,^,^,L,1) 
   (1,0,1,L,2) 
   (1,1,0,L,1) 
   (1,^,1,S,H) 
   (2,0,0,L,2) 
   (2,1,1,L,2) 
   (2,^,^,R,H) 

^1011^ 
^1010^ 
^1000^ 
^1100^ 



An equality Test 

delta = 
   (0,1,^,R,1) 
   (0,^,^,R,4) 
   (0,#,#,R,4) 
   (1,1,1,R,1) 
   (1,^,^,L,2) 
   (1,#,#,R,1) 
   (2,1,^,L,3) 
   (2,#,1,S,H) 
   (3,1,1,L,3) 
   (3,^,^,R,0) 
   (3,#,#,L,3) 
   (4,1,1,S,H) 
   (4,^,^,S,H) 
   (4,#,#,R,4) 

states         = 0,1,2,3,4,H 
tape alphabet  = 1,0,#,^ 
input alphabet = 1,0,# 
start          = 0 
blank          = ‘^' 
final          = H 



Instantaneous Descriptions 

• ID's for TM's are strings of the form  α q β , where  α, β ∈ Γ* 
and q ∈ Q. (Assume that Q and  Γ* are disjoint sets, 
guaranteeing unique parsing of ID's.)  

• The string  α  represents the non-blank tape contents to the 
left of the head.  

• The string  β  represents the non-blank tape contents to the 
right of the head, including the  currently scanned cell. 
 

• Adding or deleting a few blank symbols at the beginning of an 
ID results in an equivalent ID. Both represent the same instant 
in the execution of a TM. 
 



Sipser terminology 

• Sipser calls instantaneous descriptions 
configurations 
 

• Starting Configuration 
• Accepting Configuration 
• Rejecting Configuration 

Both of these 
are halting 

configurations 



• TM's transitions induce the relation |- between ID's.  
• Let    ω =X1. . . Xi-1 q Xi . . . Xk be an ID.  

 
• If  δ(q,Xi) is undefined, then there are no ID's  ω ' such that  ω 

|- ω '.  
 

• If  δ(q,Xi)=(p,Y,R) then 
         ω |- ω ' holds for  ω ' = X1. . . Xi-1 Y p Xi+1. . . Xk   

 
• Similarly, if  δ(q,X_i)=(p,Y,L)  
     then  ω |- ω’ holds for  ω’ =X1. . . pXi-1YXi+1 . . . Xk   
 
• When ω |- ω’      Sipser says:      “  ω  yields ω’   ” 



Note 

• If, in the first case, we have i=k, (that is we are at the 
end of the non-blank portion of the tape to the right) 
then we need to use the equivalent representation  
 

•  ω = X1 . . . Xk-1 q Xk B  
 

• for our formula to make sense. Similarly, we add a B 
to the beginning of  ω  whenever necessary. 
 



Example 
• Here is the sequence of ID's of our 

example machine,showing its 
execution with the given input 
0101: 
 

•  p0101 |- 0q101 |-01r01 |- 0s101 
 

• The machine halts, since there are 
no moves from the state s.  When 
the input is 0111, the machine 
goes forever, as follows: 
 

• p0111 |- 0q111 |- 01r11 |- 011t1 
|- 0111t |- 0111Bt |- 0111BBt |- … 



The Language of a TM 

• We define the language of the TM M to be the set L(M) of all 
strings w ∈ Σ*   
 

• such that:     Q0 w |-* α p β  
• for some p ∈ F and any  α, β   

 
• Languages accepted by TM's are call recursively enumerable  

(RE).  Sipser calls this  Turing-recognizable 
 

• Example. For our example machine, we have L(M)= 
(0+1)(0+1)0(0+1)* 
 

• If the machine recognizes some language, and also halts for all 
inputs. We say the language is Turing-decidable. 



Acceptance by Halting 

• Some text books define an alternative way of defining a 
language associated with a TM M. (But not Sipser, though 
the idea is still interesting). 

• We denote it H(M), and it consists of strings  that cause 
the TM to halt. Precisely, a string w ∈ Σ* belongs to H(M)  

• iff  q0 w |-* α p X β 
• where  δ(p,X) is undefined.   

 
• Example. For our example machine, we have  
• H(M)= ε + 0 + 1 + (0+1)(0+1) + (0+1)(0+1)0(0+1)* 



Equivalence of  
Acceptance by Final State and Halting 

• How would we prove such an equivalence? 
 

• 1. Construct a TM that accepts by Halting from 
an ordinary one. 

• 2. Construct an ordinary TM from one that 
accepts by halting. 



Computable Functions 

• Importance of having precise definitions of effectively 
computable functions, or algorithms, was understood in the 
1930's. There were several attempts to formalize the basic 
notions of computability: 

– Turing Machines (1936) 
– Post Systems (1936) 
– Recursive Functions (Kleene, 1936) 
– Markov Algorithms (1947) 
– λ-calculus (Church 1936) 

 
• On the surface, these approaches look quite different. It 

turned out, however, that they are all equivalent! All these, 
and all later formalizations (combinatory logic, while 
programs, C programs, etc.) give essentially the same meaning 
to the word algorithm . 



Church’s Thesis 

• The statement that these formalizations correspond 
to the intuitive concept of computability is known as 
Church's Thesis.  
 

• Church's Thesis is a belief, not a theorem. 
 

• (though we often act as if we believe it is true, even 
though we don’t know its is true) 
 



Power of Turing Machines (1) 

• Recall the Church Thesis: Every problem that has an 
algorithmic solution can be solved by a Turing Machine ! 

• How do we become convinced that it is reasonable to believe 
this thesis?  
 

• First, we can develop some programming techniques for TM's, 
allowing us to write machines for more and more complicated 
problems. Structuring states and tape symbols is particularly 
useful. Then, there is a possibility to use one TM as a 
subroutine for another. After having written enough TM's, we 
may get a feeling that everything that we can program in a 
convenient programming language could be done with TM.  
 



Power of Turing Machines (2) 

• Second, we can consider some generalizations 
of the concept of TM (multitape TM's, non-
deterministic TM's, ...) and prove that they are 
essentially just as powerful as the plain TM's.  

 
• Finally, we can prove that all proposed 

formalizations of the concept of computable, of 
which TM's is only one, are equivalent. In later 
lectures we will look at both Kleene and 
Church’s systems. 
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