Due by midnight, Thursday, November 21th, Submit via D2L

1. Consider the Turing machine below

TM

Q	\{0, 1, H, Q
Sigma	\{a, b $\}$
Gamma	\{a, b, ^\}
Delta	$0 \wedge->(\wedge, ~ S, ~ H) ~$
	0 a -> (a, R, 0)
	0 b -> (b, R, 1)
	1 b -> (b, R, 1)
	$1 \wedge$-> (^, S, H)
	$1 \mathrm{a}->$ (a, R, Q)
q0	0
Accept	H
Reject	Q
Blank	\wedge

A. Describe in English the language accepted
B. Give the initial configuration

C. Pick a string not in the language and show that either a sequence of related configurations gets stuck, or ends in the reject state.
D. Pick a string in the language and show that a sequence of related configurations ends in the accept state.
2. Give a Turing machine for the english language descriptions below over the alphabet $\{0,1\}$
A. $\{w \mid w$ contains an equal number of 1's and 0 's $\}$
B. $\{w \mid w$ contains twice as many 0's ans 1's \}

