CS 311 Homework 2

October 7, 2013

1. (1.14 from Sipser)
(a) Show that if M is a DFA that recognizes language B, swapping the accept and nonaccept states in M yields a new DFA recognizing the complement of B. Conclude that the class of regular languages is closed under complement.
(b) Show by giving an example that if M is an NFA that recognizes language C, swapping the accept and nonaccept states in M doesn't necessarily yield a new NFA that recognizes the complement of C. Is the class of languages recognized by NFAs closed under complement? Explain your answer.
2. (1.8 from Sipser) Use the construction in the proof of Theorem 1.45 to give the state diagram of NFAs recognizing the union of the following languages
(a) $\{w \mid w$ begins with a 1 and ends with an 0$\}$ and $\{w \mid w$ contains at least three $1 s\}$
(b) $\{w \mid w$ contains the substring 1010$\}$ and
$\{w \mid w$ has length at least three and the third character is 0$\}$
3. (1.9 from Sipser) Use the construction in the proof of Theorem 1.47 to give the state diagrams of NFAs recognizing the concatenation of the following languages
(a) $\{w \mid$ the length of w is at least 5$\}$ and $\{w \mid$ every odd position of w is a 1$\}$
(b) $\{w \mid w$ contains at least three $1 s\}$ and the empty set
4. (1.10 from Sipser) Use the construction in the proof of Theorem 1.49 to give the state diagram of NFAs recognizing the star of the following languages
(a) $\{w \mid w$ contains at least three $1 s\}$
(b) the empty language
5. (1.31 from Sipser, problem 5 from the last homework) For any string $w=w_{1} w_{2} \ldots w_{n}$, the reverse of w, written as w^{R} is the string w in reverse order $w_{n} \ldots w_{2} w_{1}$. For any language A, let $A^{R}=\left\{w^{R} \mid w \in A\right\}$. Show that if A is regular, then so is A^{R}.
6. (1.32 from Sipser) Let

$$
\Sigma_{3}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \ldots\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

i.e. Σ_{3} contains all size 3 columns of 0 s and 1 s. A string of symbols in Σ_{3} gives three rows of 0 s and 1 s . Consider each row to be a binary number and let B be the language

$$
B=\left\{w \in \Sigma_{3}^{*} \mid \text { the bottom row of } w \text { is the sum of the top two rows }\right\}
$$

Show that B is regular. (Hint: Working with B^{R} is easier. You may assume the result claimed in the previous problem.)

