
CS 311 Homework 7

November 18, 2013

1. (from exercise 3.2 in Sipser) Consider the Turing machine presented in
Example 3.9 in Sipser. In each of the parts, give the sequence of config-
urations that the Turing machine enters when started on the indicated
input string.

(a) 1#1

(b) 1##1

(c) 10#11

(d) 10#10

2. (from 3.8 in Sipser) Give the state machine descriptions for Turing ma-
chines that recognize the following languages

(a) {w|w contains twice as many 0s as 1s}
(b) {w|w does not contain twice as many 0s as 1s}

3. (from 3.16 in Sipser) Show that the Turing-recognizable languages are
closed under

(a) concatentation

(b) star

This problem requires providing constructions that take individual Turing
machines and combines them into a new machine that recognizes the new
language. We’re looking for a high level description in the style of what
Sipser calls a “implementation” level in pages 184-185. Also look at the
answers to 3.16.a in the back of the chapter for an example of the kind of
solution we’re looking for.

4. In the lecture notes we introduced a grammar for an algebra of primitive
recursive functions.

Term ::= Z

| S

| P N

1

| C Term [Term1, ... ,TermN]

| PR Term Term

N ::= 1 | 2 | 3 | 4 | ...

In lecture notes and in the text below, primitive recursive functions over
natural numbers are defined. I have also written a Haskell interpreter for
that formalization. It is in the file NaturalPR.hs. for those who might
want to study it. This file is available on the class index page.

For this assignment you have two options, either of which is
acceptable. You may do either of the following:

(a) do the original assignment below with pencil and paper,

(b) do the original assignment below as a programming exercise (possibly
starting from NaturalPR.hs)

1 Original Assignment

(a) In lecture I presented five schemas for defining primitive recursive
functions. They are as follows:

i. [Zero] There is a constant function zero of every arity.

Z(x1, . . . , xk) = 0

ii. [Successor] There is a successor function of arity 1.

S(x) = x + 1

iii. [Projection] There are projection functions for every argument
position of every arity.

P i (x1, . . . , xk) = xi where k > 0, i ≤ k

iv. [Composition (also called substitution)] The composition of the
function f of arity k with functions g1, . . . gk, each of arity l,
defines a C f [g1 . . . gk] of arity l satisfying:

C f [g1 . . . gk](x1, . . . , xl) = f (g1(x1, . . . , xl), . . . , gk(x1, . . . , xl))

v. [Primitive Recursion] The arity k function defined by primitive
recursion from a function h of arity k − 1 and a function g of
arity k + 1 is indicated PR h g. It satisfies:

PR h g(0, x2, . . . , xk) = h(x2, . . . , xk)
PR h g(x + 1, x2, . . . , xk) = g(x,PR h g(x, x2, . . . , xk), x2, . . . , xk)

2

In lecture we showed how to define addition by primitive recursion:

add = PR(P1)(C S [P 2])

Using primitive recursion define:

i. Multiplication

ii. Constant true function (e.g. true(x1, . . . , xn) = 1)

iii. Constant false function (e.g. false(x1, . . . , xn) = 0)

iv. If-then-else (e.g. ITE(1, x, y) = x, ITE(0, x, y) = y)

v. Or

vi. And

vii. Not

viii. Minus (e.g. x− y when x > y and 0 otherwise)

ix. Integer equality

x. The factorial function

Note that each of these solutions is a term in the grammar given
above.

3

