CS 311: Computational Structures

James Hook and Tim Sheard

October 31, 2013

6 PDA to CFG Example

Consider the PDA:

$$
\begin{array}{llll}
\delta(0, \epsilon, \epsilon) & =\{(1, \$)\} & +\$ & 1 \\
\delta(1, a, \epsilon) & =\{(1, \#)\} & +\# & 2 \\
\delta(1, b, \#) & =\{(2, \epsilon)\} & -\# & 3 \\
\delta(2, b, \#) & =\{(2, \epsilon)\} & -\# & 4 \\
\delta(2, \epsilon, \$) & =\{(3, \epsilon)\} & -\$ & 5
\end{array}
$$

In this summary I have indicated if a rule is a "push" of $t(+t)$ or a "pop" of $t(-t)$. I have also numbered each line in the definition of δ for reference.

Recall that the construction introduces rules of the form:

$$
A_{p q} \rightarrow a A_{r s} b
$$

when there is a stack symbol t such that:

$$
\begin{aligned}
& (r, t) \in \delta(p, a, \epsilon) \\
& (q, \epsilon) \in \delta(s, b, t)
\end{aligned}
$$

Note that this is exactly when the transition from p to r is labeled $+t$ and the transition from s to q is labeled $-t$.

Applying this rule to all of δ yields 3 instances. They are:

$$
\begin{array}{rllll}
A_{03} & \rightarrow & A_{12} & +-\$ & 1,5 \\
A_{12} & \rightarrow & a A_{11} b & +-\# & 2,3 \\
& \mid a A_{12} b & +-\# & 2,4
\end{array}
$$

Here I have annotated each rule with what symbol is being pushed and poped $(+-t)$ and which lines in the definition of δ are used in the construction.

The grammar is completed by using one instance of the construction that introduces null productions:

$$
A_{11} \rightarrow \epsilon
$$

It is, of course, safe to add all other null productions, but no other null productions contribute to the generation of any strings in the language.

