
Algorithms and Church’s Thesis

Sipser pages 154 - 163

Enumeration

• Recall we said that acceptance by a TM was
also called recursively enumerable.

• An enumerator is a machine that
“enumerates” all strings in a language.

• Think of it as a Turing machine with a printer.
– Every string is eventually “printed”
– Some strings are “printed more than once”

Computable Functions

• Importance of having precise definitions of effectively
computable functions, or algorithms, was understood in the
1930's. There were several attempts to formalize the basic
notions of computability:

– Turing Machines (1936)
– Post Systems (1936)
– Recursive Functions (Kleene, 1936)
– Markov Algorithms (1947)
– λ-calculus (Church 1936)

• On the surface, these approaches look quite different. It

turned out, however, that they are all equivalent! All these,
and all later formalizations (combinatory logic, while
programs, C programs, etc.) give essentially the same meaning
to the word algorithm .

Church’s Thesis

• The statement that these formalizations correspond
to the intuitive concept of computability is known as
Church's Thesis.

• Church's Thesis is a belief, not a theorem.

• (though we often act as if we believe it is true, even
though we don’t know its is true)

Power of Turing Machines (1)

• Recall the Church Thesis: Every problem that has an
algorithmic solution can be solved by a Turing Machine !

• How do we become convinced that it is reasonable to believe
this thesis?

• First, we can develop some programming techniques for TM's,
allowing us to write machines for more and more complicated
problems. Structuring states and tape symbols is particularly
useful. Then, there is a possibility to use one TM as a
subroutine for another. After having written enough TM's, we
may get a feeling that everything that we can program in a
convenient programming language could be done with TM.

Power of Turing Machines (2)

• Second, we can consider some generalizations
of the concept of TM (multitape TM's, non-
deterministic TM's, ...) and prove that they are
essentially just as powerful as the plain TM's.

• Finally, we can prove that all proposed

formalizations of the concept of computable, of
which TM's is only one, are equivalent. In later
lectures we will look at both Kleene and
Church’s systems.

Computation using Numerical Functions

• Weʼre used to thinking about computation as
something we do with numbers (e.g. on the
naturals)

• What kinds of functions from numbers to
numbers can we actually compute?

• To study this, we make a very careful selection
of building blocks

Turing-computable functions

• To formalize the connection between partial
recursive functions and Turing machines, we
need to describe how to use TMʼs to compute
functions on ℕ.

• We say a function f : ℕ x ℕ x ... x ℕ → ℕ is Turing-
computable if there exists a TM that, when
started in configuration q01n1⊔1n2⊔...⊔1nk, halts
with just 1f(n1,n2,...nk) on the tape.

• Fact: f is Turing-computable iff it is partial
recursive.

	Algorithms and Church’s Thesis
	Enumeration
	Computable Functions
	Church’s Thesis
	Power of Turing Machines (1)
	Power of Turing Machines (2)
	Computation using Numerical Functions
	Turing-computable functions

