
Algorithms for regular languages

Algorithms

• We have seen many algorithms.
– These algorithms form the basis of many proofs.
– They construct one computational mechanism

from another

• The algorithms have been presented
– In the text
– In the homework and exercises
– In lectures in class

Characterizing algorithms

• The algorithms come in several classes
1. Closure algorithms

1. Some operation forms a new computational mechanism
from an old mechanism but in the same class

1. Union, intersection, complement, reversal, prefix,
concatenation, etc.

2. Inclusion algorithms
1. Every computational mechanism from some class has an

equivalent mechanism in another class
1. DFA ⊆ NFA
2. RegExp ⊆ NFA
3. GNFA ⊆ NFA
4. NFA ⊆ DFA

Union is closed over DFA

• Key ideas
– Product (pair) construction
– Any pair with a final state is final
– Remove unreachable states

B={bc}

A={ab}

A ∪ B ={ab,bc}

Intersection is closed over DFA

• Key ideas
– Product (pair) construction
– Only pairs with both left and right as final are final
– Remove unreachable states

Contains a “0” Contains a “1”

Contains both a
“1” and a “0”

Complement is closed over DFA

• Key idea – Switch final and non final states.

Just “abc” Anything but “abc”

Reversal is closed over NFA
• Key ideas

1. Reverse all arcs
2. The old start state becomes the only new final state
3. Add a new start state, and an ε-arc from it to all old final states.

Concatenation is closed for NFA

• Key ideas
– Union the states (you might have to rename them)
– Add an ε-transition from each final state of the first to the start state

of the second.

Kleene star is closed over NFA
• Key ideas

– Add a new state.
– Make it the start state in the new NFA.
– Add an ε-arc from this state to the old start state.
– Add ε-arcs from every final state to this new state.

ε-NFA ⊆ NFA
• Key ideas

– Compute e-closure for each state
– Use these sets-of-states as states in a new NFA
– Compute transitions by unioning transitions from individual states in the set of

states on the old transition function

DFA ⊆NFA
• Key idea

– Make a new transition function that returns a singleton set!
– Everything else remains the same!

An NFA is a quintuple A= (Q,S,T,q0,F) , where
Q is a set of states
S is the alphabet (of input symbols)
T: Q × S → P(Q) is the transition function
q0 ∈ Q -- the start state
F ⊆ Q -- final states

A DFA is a quintuple A = (Q,S,T,q0,F) where
Q is a set of states
S is the alphabet (of input symbols)
T: Q × S → Q is the transition function
q0 ∈ Q -- the start state
F ⊆ Q -- final states

dfaToNfa (DFA states alphabet trans start accept)
 = (NFA states alphabet delta start accept)
 where delta s c = [trans s c]

NFA ⊆ DFA

• Key ideas
– Use subset construction
– Remove unreachable states

RegExp ⊆ NFA
• Key ideas

1. Decompose a RegExp into its parts
2. Small parts make simple DFAs
3. Combine smaller parts by merging with new transitions, and or new states.
4. One can proceed top down or bottom up
5. Remove ε-transitions

 RegExp

a*c(ε + b)

Parenthesized
(a*)(c(ε + b))

Tree

With ε-transitions removed

NFA ⊆ RegExp
• Key ideas

– Use GNFA construction (arcs labelled with RegExp)
– Remove one state at a time

i k j F E

i k j E F

G

i k j E F

G

H

i k j E F

H

i j EF

i j EG*F

i j EF + H

i j EG*F + H

DFA

NFA

εNFA

RegExp

Lift delta fun

Subset
Construction

Via GenNFA by
RegExp
decompostion

State
Elimination

GenNFA

Delta fun lifting

ε-removal

data DFA q s =
 DFA { states :: [q],
 symbols :: [s],
 delta :: q -> s -> q,
 start :: q,
 final :: [q]} data NFA q s =

 NFA { states :: [q],
 symbols :: [s],
 delta :: q -> s -> [q],
 start :: q,
 final :: [q]}

data NFAe q s =
 NFAe { states :: [q],
 symbols :: [s],
 delta :: q -> Maybe s -> [q],
 start :: q,
 final :: [q]}

data RegExp a
 = Epsilon
 | Empty
 | One a
 | Union (RegExp a) (RegExp a)
 | Cat (RegExp a) (RegExp a)
 | Star (RegExp a)

data GNFA q s =
 GNFA { states :: [q],
 symbols :: [s],
 delta :: q -> q -> RegExp
s,
 start :: q,
 final :: q }

	Algorithms for regular languages
	Algorithms
	Characterizing algorithms
	Union is closed over DFA
	Intersection is closed over DFA
	Complement is closed over DFA
	Reversal is closed over NFA
	Concatenation is closed for NFA
	Kleene star is closed over NFA
	ε-NFA  NFA
	DFA NFA
	NFA  DFA
	RegExp  NFA
	NFA  RegExp
	Slide Number 15

