Algorithms for regular languages

Algorithms

- We have seen many algorithms.
 - These algorithms form the basis of many proofs.
 - They construct one computational mechanism from another
- The algorithms have been presented
 - In the text
 - In the homework and exercises
 - In lectures in class

Characterizing algorithms

- The algorithms come in several classes
 - 1. Closure algorithms
 - 1. Some operation forms a new computational mechanism from an old mechanism but in the same class
 - 1. Union, intersection, complement, reversal, prefix, concatenation, etc.
 - 2. Inclusion algorithms
 - 1. Every computational mechanism from some class has an equivalent mechanism in another class
 - 1. $\mathsf{DFA} \subseteq \mathsf{NFA}$
 - 2. RegExp \subseteq NFA
 - 3. $GNFA \subseteq NFA$
 - 4. NFA \subseteq DFA

Union is closed over DFA

- Key ideas
 - Product (pair) construction
 - Any pair with a final state is final
 - Remove unreachable states

Intersection is closed over DFA

- Key ideas
 - Product (pair) construction
 - Only pairs with both left and right as final are final
 - Remove unreachable states

Contains both a "1" and a "0"

Complement is closed over DFA

• Key idea – Switch final and non final states.

Reversal is closed over NFA

- Key ideas
 - 1. Reverse all arcs
 - 2. The old start state becomes the only new final state
 - 3. Add a new start state, and an ε -arc from it to all old final states.

Concatenation is closed for NFA

- Key ideas
 - Union the states (you might have to rename them)
 - Add an ϵ -transition from each final state of the first to the start state of the second.

Kleene star is closed over NFA

• Key ideas

- Add a new state.
- Make it the start state in the new NFA.
- Add an ε -arc from this state to the old start state.
- Add ε -arcs from every final state to this new state.

$\epsilon\text{-NFA} \subseteq \text{NFA}$

- Key ideas
 - Compute e-closure for each state
 - Use these sets-of-states as states in a new NFA
 - Compute transitions by unioning transitions from individual states in the set of states on the old transition function

$\mathsf{DFA} \subseteq \mathsf{NFA}$

- Key idea
 - Make a new transition function that returns a singleton set!
 - Everything else remains the same!

A DFA is a quintuple $A = (Q,S,T,q_0,F)$ where Q is a set of *states* S is the **alphabet** (of *input symbols*) T: $Q \times S \rightarrow Q$ is the *transition function* $q_0 \in Q$ -- the *start state* $F \subseteq Q$ -- *final states*

An NFA is a quintuple $A= (Q,S,T,q_0,F)$, where Q is a set of *states* S is the alphabet (of *input symbols*) $T: Q \times S \rightarrow P(Q)$ is the *transition function* $q_0 \in Q$ -- the *start state* $F \subseteq Q$ -- *final states*

dfaToNfa (DFA states alphabet trans start accept)
 = (NFA states alphabet delta start accept)
where delta s c = [trans s c]

$\mathsf{NFA} \subseteq \mathsf{DFA}$

- Key ideas
 - Use subset construction
 - Remove unreachable states

$\mathsf{RegExp} \subseteq \mathsf{NFA}$

- Key ideas
 - 1. Decompose a RegExp into its parts
 - 2. Small parts make simple DFAs
 - 3. Combine smaller parts by merging with new transitions, and or new states.
 - 4. One can proceed top down or bottom up
 - 5. Remove ε-transitions

$NFA \subseteq RegExp$

- Key ideas
 - Use GNFA construction (arcs labelled with RegExp)
 - Remove one state at a time

