
Automata and Formal Languages

Tim Sheard 1 Lecture 6

RegExp = (DFA,NFA,NFAe)

Sipser pages 66-76

What do we know?

DFA = NFA = ε-NFA

We have seen algorithms to transform

DFA to NFA (trival)
NFA to ε−NFA (trivial)
NFA to DFA (subset construction)
Ε-NFA to NFA (ε-removal)

The last piece of the puzzle is to show that
regular expressions are equivalent to
automata.

Outline

We have two results to prove:

Theorem 1. For every regular expression

E, there exists an ε-NFA A such that
L(E)=L(A).

Theorem 2. For every DFA A, there exists

a regular expression E such that
L(A)=L(E).

Process

Since we've already seen the ''equivalence'' of
various forms of finite automata, the picture is
about to become complete: the same class of
languages (REGULAR LANGUAGES, of course) is
defined by

1. Any of the 3 types of automata

(DFA, NFA, ε-NFA)

2. Regular expressions

Proofs of both theorems are constructive; we'll

learn algorithms to construct an ε-NFA from a
regular expression, and a regular expression
from a DFA.

Four Algorithms

1. RegExp -> ε-NFA via delta-extension
Sipser pages 67-69

2. RegExp -> DFA via GenNFA

3. DFA -> RegExp via state elimnation

Sipser pages 69-76

4. DFA -> RegExp via GenNFA

Alg 1 - RE to ε-NFA via delta-extension
Sipser pages 67-69

1. Decompose a RegExp into its parts

2. Small parts make simple DFAs

3. Combine smaller parts by merging the
delta functions of both parts, and by
extending the merger (if necessary) with
new transitions, and or new states.

data RegExp a
 = Lambda
 | Empty
 | One a
 | Union (RegExp a) (RegExp a)
 | Cat (RegExp a) (RegExp a)
 | Star (RegExp a)

RE as Trees

Every RE has a tree like structure. We
process the tree bottom-up, strating from
the leaves.

"(ab+aab)*"

Small (leaf) Cases

Suppose E is a given regular expression.
The construction of the automaton A such
that L(RE)=L(A) is defined by induction on
the structure of RE.

Base Case: There are three base cases:
 E=ε, E=∅, and E=a, where a∈Σ. Here are

the corresponding automata.

a

E=ε E=∅ E=a

Induction Step

There are three cases to consider
Case 1: E=FG. Suppose (Ind. Hyp.) we have

automata B and C such that L(F)=L(B) and
L(G)=L(C).

Let A be the automaton obtained by taking states
and transitions of B and C together,

Then add Λ-transitions from all final states of B to
the start state of C (delta-extension).

Then declare the start state (of the new automata)
to be the start state of B.

The final states (of the new automata) to be the
final states of C.

B C

BC

ε
ε

ε

We need to check that L(A)=L(B)L(C); it will follow then that L(A)=L(E)

Case 2: E=F+G

Again, take F,G such that L(F)=L(B) and
L(G)=L(C). Get A by adding a new start state and
ε-transitions from the new state to the start
states of B and C. Check that L(A)=L(B) ∪ L(C)!

B

C

ε

ε

A

Case 3: E = F*

Take B such that L(B)=L(F)and define A as
in the picture. Check that L(A)=L(B)*.

B B

ε

ε

ε

ε

Exercise

Exercise. Construct an ε-NFA accepting the
language of the regular expression (ab+aab)*

Definition - Generalized NFA

Generalize DFA so that every transition is a
regular expression rather than a letter of
the alphabet.

An GenNFA is a quintuple A=(Q,Σ,s,F,δ),

where the first four components are as in a DFA,
and the transition function labels arcs between
states with regular expressions.

δ: Q × Q → RegExp(Σ)

Alg 2 - RegExp to DFA via GenNFA
(not covered in Sipser)

Given a RegExp: ab+ac+ad+ae+af
1. Construct a simple GenNFA with two

states with one arc between the two
states labeled with the regular
expression.

2. The source of the arc is the start state

3. The target of the arc is the final state

Extend the GenNFA

(a+b)*cd*

(a+Λ+∅)c*

Alg 3 - From DFA to RE by state elimination
(Sipser pages 69-76)

1. The last construction was in fact algorithmic in
both directions. We can improve the algorithm
as follows. With an input NFA A, it will produce
a regular expression E such that L(E)=L(A).

2. First we standardize the automaton A so that:
• there is only one final state
• no arcs go out of the final state
• no arcs come into the initial state

3. Do this by using ε-transitions

ε
ε

ε

ε

Assume the initial and final states are n-1
and n. We eliminate the states 1,2,…,n-2
one by one, producing intermediate
automata whose arcs are labeled by
regular expressions (i.e GenNFA).

 We end up with an automaton that has two

states n-1 and n, and only one arc (from
n-1 to n) whose label is the required
regular expression E.

Algorithm

For k = 1 to n-2 (* eliminate each node, k in turn *)

 For i = k+1 to n-1 (* i flows into k *)

 For j = k+1 to n (* k flows into j *)

 case paths i to k to j of

i k j F E

i k j E F

G

i k j E F

G

H

i k j E F

H

i j EF

i j EG*F

i j EF + H

i j EG*F + H

Each case
removes k, and
adds a new label
from i to j.

Example
a

a

a b b
b

a

3

1 2 a

a b b
b

5

4 ε
ε

ε
1. there is only one final state
2. no arcs go out of the final state
3. no arcs come into the initial state
4. Renumber so final = n and start = n-1

Eliminate k=1

2-1-2 2-(aa)-2
2-1-3 2-(b+ab)-3
2-1-4 ∅
2-1-5 ∅
3-1-2 3-(ba+a)-2
3-1-3 3-(bb)-3
3-1-4 ∅
3-1-5 ∅
4-1-2 4-(a)-2
4-1-3 4-(b)-3
4-1-4 ∅
4-1-5 ∅

3

1 2 a

a
b b

b

5

4
ε

ε

ε

a

3

2

ba+a
b+ab

5

4
a

ε

ε

b

aa

bb

i k j F E i j EF

i k j E F

H

i j EF + H

Eliminate k=2

3-2-3 3-((ba+a)(aa)*(b+ab) +bb)-3
3-2-4 ∅

3-2-5 3-((ba+a)(aa)*ε + ε)-5
4-2-3 4-(a(aa)*(b+ab) + b)-3
4-2-4 ∅

4-2-5 4-(a(aa)*ε)-5

3

2

ba+a
b+ab

5

4
a

ε

ε

b

aa

bb

i k j E F

G

H

i j EG*F + H

3
5

4

(ba+a)(aa)*ε + ε
a(aa)*(b+ab) + b

(ba+a)(aa)*(b+ab) + bb

a(aa)*ε

K=3

4-3-4 ∅
4-3-5 4-((a(aa)*(b+ab) + b)
 ((ba+a)(aa)*(b+ab) + bb)*

 ((ba+a)(aa)*ε + ε) + a(aa)*ε)-5

3
5

4

(ba+a)(aa)*ε + ε
a(aa)*(b+ab) + b

(ba+a)(aa)*(b+ab) + bb

a(aa)*ε

Another example

Alg 4 - From DFA to RE via path labels
(not covered in Sipser)

Suppose A is a given DFA. Our goal is to find a
regular expression E such that L(E)=L(A).

Assume the state set of A is {1,2,…,n}$. Let Lij be

the language consisting of labels of all paths
from i to j.

Note that L(A) = ∪q∈ F Lsq
s is the start state,
F is the set of final states,
Lsq is the labels of all paths from s to q

We'll be done if we can find regular expressions Eij

such that Lij =L(Eij).

Exercise: Compute

LBC = {“0”, ”1”}

LBD = _________________________

LAB = _________________________

LAD = _________________________

A B D

0

0 0,1 C

1

0,1

DFA

NFA

εNFA

RegExp

Lift delta fun

Subset
Construction

Via GenNFA by
RegExp
decompostion

State
Elimination

GenNFA

Delta fun
lifting

ε-removal

data DFA q s =
 DFA { states :: [q],
 symbols :: [s],
 delta :: q -> s -> q,
 start :: q,
 final :: [q]} data NFA q s =

 NFA { states :: [q],
 symbols :: [s],
 delta :: q -> s -> [q],
 start :: q,
 final :: [q]}

data NFAe q s =
 NFAe { states :: [q],
 symbols :: [s],
 delta :: q -> Maybe s -> [q],
 start :: q,
 final :: [q]}

data RegExp a
 = Epsilon
 | Empty
 | One a
 | Union (RegExp a) (RegExp a)
 | Cat (RegExp a) (RegExp a)
 | Star (RegExp a)

data GNFA q s =
 GNFA { states :: [q],
 symbols :: [s],
 delta :: q -> q -> RegExp s,
 start :: q,
 final :: q }

Decidability of the Regular Languages

Since we can produce an equivalent DFA for
any regular expression or ε-NFA, we will
know how to recognize whether any two
given representations of regular
languages are equivalent.

Transform both into into DFAs: X and Y
Minimize X and Y to Xmin and Ymin
Test if Xmin and Ymin are isomorphic.
(problem 1.52, page 91 Sipser)

	RegExp = (DFA,NFA,NFAe)
	What do we know?
	Outline
	Process
	Four Algorithms
	Alg 1 - RE to e-NFA via delta-extension�Sipser pages 67-69
	RE as Trees
	Small (leaf) Cases
	Induction Step
	Slide Number 10
	Case 2: E=F+G
	Case 3: E = F*
	Exercise
	Definition - Generalized NFA
	Alg 2 - RegExp to DFA via GenNFA�(not covered in Sipser)
	Extend the GenNFA
	(a+b)*cd*
	(a+L+)c*
	Alg 3 - From DFA to RE by state elimination�(Sipser pages 69-76)
	Slide Number 20
	Algorithm
	Example
	Eliminate k=1
	Eliminate k=2
	K=3
	Another example
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Alg 4 - From DFA to RE via path labels�(not covered in Sipser)
	Exercise: Compute
	Slide Number 32
	Decidability of the Regular Languages

