
Automata and Formal Languages 

Tim Sheard 1 Lecture 6 

RegExp = (DFA,NFA,NFAe) 

Sipser pages 66-76 



What do we know? 

DFA  =  NFA  = ε-NFA 
 
We have seen algorithms to transform  

DFA to NFA (trival) 
NFA to ε−NFA (trivial) 
NFA to DFA (subset construction) 
Ε-NFA to NFA (ε-removal) 

 

The last piece of the puzzle is to show that 
regular expressions are equivalent to 
automata. 



Outline 

We have two results to prove: 
  
Theorem 1. For every regular expression 

E, there exists an ε-NFA A such that 
L(E)=L(A).  

  
Theorem 2. For every DFA A, there exists 

a regular expression E such that 
L(A)=L(E).  



Process 

Since we've already seen the  ''equivalence'' of 
various forms of finite automata, the picture is 
about to become complete: the same class of 
languages (REGULAR LANGUAGES, of course) is 
defined by 

 
1. Any of the 3 types of automata  

(DFA, NFA, ε-NFA) 

2. Regular expressions 
 
Proofs of both theorems are constructive; we'll 

learn algorithms to construct an ε-NFA from a 
regular expression, and a regular expression 
from a DFA. 

 



Four  Algorithms 

1. RegExp -> ε-NFA   via delta-extension 
Sipser pages 67-69 

 
2. RegExp -> DFA   via GenNFA 

 
3. DFA -> RegExp   via state elimnation 

Sipser pages 69-76 

 
4. DFA -> RegExp   via GenNFA 
 
 
 



Alg 1 - RE to ε-NFA via delta-extension 
Sipser pages 67-69 

1. Decompose a RegExp into its parts 
 
 

2. Small parts make simple DFAs 
 

3. Combine smaller parts by merging the 
delta functions of both parts, and by 
extending the merger (if necessary) with 
new transitions, and or new states. 

data RegExp a 
   = Lambda           
   | Empty                         
   | One a    
   | Union (RegExp a) (RegExp a)  
   | Cat (RegExp a) (RegExp a)  
   | Star (RegExp a) 



RE as Trees 

Every RE has a tree like structure. We 
process the tree bottom-up, strating from 
the leaves.  

 
"(ab+aab)*"   



Small (leaf) Cases 

Suppose E is a given regular expression. 
The construction of the automaton A such 
that L(RE)=L(A) is defined by induction on 
the structure of RE. 

  
Base Case: There are three base cases: 
 E=ε, E=∅, and E=a, where a∈Σ. Here are 

the corresponding automata. 
  
 

a 

E=ε E=∅ E=a 



Induction Step 

There are three cases to consider 
Case 1: E=FG.  Suppose (Ind. Hyp.) we have 

automata B and C such that L(F)=L(B) and 
L(G)=L(C).  

Let A be the automaton obtained by taking states 
and transitions of B and C together,  

Then add Λ-transitions from all final states of B to 
the start state of C   (delta-extension). 

Then declare the start state (of the new automata) 
to be the start state of B. 

The final states (of the new automata) to be the 
final states of C.  

 



B C 

BC 

ε 
ε 

ε 

We need to check that L(A)=L(B)L(C); it will follow then that L(A)=L(E)  



Case 2:  E=F+G 

Again, take  F,G  such that L(F)=L(B) and 
L(G)=L(C). Get A by adding a new start state and 
ε-transitions from the new state to the start 
states of B and C. Check that L(A)=L(B) ∪ L(C)!  

 

B 

C 

ε 

ε 

A 



Case 3: E = F* 

Take B such that L(B)=L(F)and define A as 
in the picture. Check that L(A)=L(B)*. 

  

 

B B 

ε 

ε 

ε 

ε 



Exercise 

Exercise. Construct an ε-NFA accepting the 
language of the regular expression (ab+aab)* 

  
 



Definition - Generalized  NFA 

Generalize DFA so that every transition is a 
regular expression rather than a letter of 
the alphabet. 

 
An GenNFA is a quintuple A=(Q,Σ,s,F,δ), 

where the first four components are as in a DFA, 
and the transition function labels arcs between 
states with regular expressions. 

δ: Q × Q  → RegExp(Σ) 

 



Alg 2 - RegExp to DFA via GenNFA 
(not covered in Sipser) 

Given a RegExp:   ab+ac+ad+ae+af 
1. Construct a simple GenNFA with two 

states with one arc between the two 
states labeled with the regular 
expression. 
 

2. The source of the arc is the start state 
 

3. The target of the arc is the final state 



Extend the GenNFA 



(a+b)*cd* 



(a+Λ+∅)c* 



Alg 3 - From DFA to RE by state elimination 
(Sipser pages 69-76) 

1. The last construction was in fact algorithmic in 
both directions. We can improve the algorithm 
as follows. With an input NFA A, it will produce 
a regular expression E such that L(E)=L(A).  

2. First we standardize the automaton A so that: 
• there is only one final state 
• no arcs go out of the final state 
• no arcs come into the initial state 

3. Do this by using ε-transitions 

ε 
ε 

ε 

ε 



Assume the initial and final states are n-1 
and n. We eliminate the states 1,2,…,n-2 
one by one, producing intermediate 
automata whose arcs are labeled by 
regular expressions (i.e GenNFA). 

 
 We end up with an automaton that has two 

states n-1 and n, and only one  arc (from 
n-1 to n) whose label is the required 
regular expression E.  

 



Algorithm 

For k = 1 to n-2   (* eliminate each node, k in turn *) 

 For i = k+1 to n-1   (* i flows into k *) 

  For j = k+1 to n  (* k flows into j *) 

   case paths i to k to j of 
 

  
i k j F E 

i k j E F 

G 

i k j E F 

G 

H 

i k j E F 

H 

i j EF 

i j EG*F 

i j EF + H 

i j EG*F + H 

Each case 
removes k, and 
adds a new label 
from i to j. 



Example 
a 

a 

a b b 
b 

a 

3 

1 2 a 

a b b 
b 

5 

4 ε 
ε 

ε 
1. there is only one final state 
2. no arcs go out of the final state 
3. no arcs come into the initial state 
4. Renumber so final = n and start = n-1 



Eliminate k=1 

2-1-2    2-(aa)-2 
2-1-3    2-(b+ab)-3 
2-1-4   ∅ 
2-1-5   ∅ 
3-1-2   3-(ba+a)-2 
3-1-3   3-(bb)-3 
3-1-4  ∅ 
3-1-5  ∅ 
4-1-2   4-(a)-2 
4-1-3  4-(b)-3 
4-1-4  ∅ 
4-1-5  ∅ 
  
  

3 

1 2 a 

a 
b b 

b 

5 

4 
ε 

ε 

ε 

a 

3 

2 

ba+a 
b+ab 

5 

4 
a 

ε 

ε 

b 

aa 

bb 

i k j F E i j EF 

i k j E F 

H 

i j EF + H 



Eliminate k=2 

3-2-3  3-( (ba+a)(aa)*(b+ab) +bb )-3     
3-2-4   ∅     

3-2-5  3-( (ba+a)(aa)*ε + ε )-5 
4-2-3  4-(a(aa)*(b+ab) + b)-3    
4-2-4  ∅  

4-2-5  4-(a(aa)*ε)-5 
 

  
  
  

3 

2 

ba+a 
b+ab 

5 

4 
a 

ε 

ε 

b 

aa 

bb 

i k j E F 

G 

H 

i j EG*F + H 

3 
5 

4 

(ba+a)(aa)*ε + ε 
a(aa)*(b+ab) + b 

(ba+a)(aa)*(b+ab) + bb 

a(aa)*ε 



K=3 

4-3-4   ∅ 
4-3-5   4-((a(aa)*(b+ab) + b) 
               ((ba+a)(aa)*(b+ab) + bb)* 

               ((ba+a)(aa)*ε + ε) + a(aa)*ε)-5 
 

  
  
  

3 
5 

4 

(ba+a)(aa)*ε + ε 
a(aa)*(b+ab) + b 

(ba+a)(aa)*(b+ab) + bb 

a(aa)*ε 



Another example 









Alg 4 - From DFA to RE via path labels 
(not covered in Sipser) 

Suppose A is a given DFA. Our goal is to find a 
regular expression E such that L(E)=L(A).  

  
Assume the state set of A is {1,2,…,n}$. Let Lij be 

the language consisting of labels of all paths 
from i to j.  

Note that L(A) = ∪q∈ F Lsq  
s is the start state,  
F is the set of final states, 
Lsq is the labels of all paths from s to q 

 
We'll be done if we can find regular expressions Eij 

such that Lij =L(Eij).  
 



Exercise: Compute 

LBC = {“0”, ”1”} 

 
LBD = _________________________ 
 
LAB = _________________________ 
 
LAD = _________________________ 

A B D 

0 

0 0,1 C 

1 

0,1 



DFA 

NFA 

εNFA 

RegExp 

Lift delta fun 

Subset 
Construction 

Via GenNFA by 
RegExp 
decompostion 

State 
Elimination 

GenNFA 

Delta fun 
lifting 

ε-removal 

data DFA q s =  
   DFA { states :: [q], 
              symbols :: [s], 
              delta :: q -> s -> q, 
              start :: q, 
             final :: [q]} data NFA q s =  

   NFA { states :: [q], 
              symbols :: [s], 
              delta :: q -> s -> [q], 
              start :: q, 
               final :: [q]} 

data NFAe q s =  
   NFAe { states :: [q], 
                symbols :: [s], 
                delta :: q -> Maybe s -> [q], 
                start :: q, 
                final :: [q]} 

data RegExp a 
   = Epsilon           
   | Empty                         
   | One a    
   | Union (RegExp a) (RegExp a)  
   | Cat (RegExp a) (RegExp a)  
   | Star (RegExp a) 

data GNFA q s =  
   GNFA { states :: [q], 
                 symbols :: [s], 
                 delta :: q -> q -> RegExp s, 
                 start :: q, 
                 final :: q } 



Decidability of the Regular Languages 

Since we can produce an equivalent DFA for 
any regular expression or ε-NFA, we will 
know how to recognize whether any two 
given representations of regular 
languages are equivalent. 

 
Transform both into into DFAs:  X and Y 
Minimize X and Y to  Xmin and Ymin 
Test if Xmin and Ymin are isomorphic. 
(problem 1.52, page 91 Sipser) 
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