RegExp = (DFA,NFA,NFAe)

Sipser pages 66-76

Tim Sheard

What do we know?

 $DFA = NFA = \varepsilon - NFA$

We have seen algorithms to transform DFA to NFA (trival) NFA to ε–NFA (trivial) NFA to DFA (subset construction) E-NFA to NFA (ε-removal)

The last piece of the puzzle is to show that regular expressions are equivalent to automata.

Outline

We have two results to prove:

Theorem 1. For every regular expression E, there exists an ε -NFA A such that L(E)=L(A).

Theorem 2. For every DFA A, there exists a regular expression E such that L(A)=L(E).

Process

Since we've already seen the "equivalence" of various forms of finite automata, the picture is about to become complete: the same class of languages (REGULAR LANGUAGES, of course) is defined by

- 1. Any of the 3 types of automata (DFA, NFA, ε-NFA)
- 2. Regular expressions

Proofs of both theorems are constructive; we'll learn algorithms to construct an ε-NFA from a regular expression, and a regular expression from a DFA.

Four Algorithms

- 1. RegExp -> ε-NFA via delta-extension Sipser pages 67-69
- 2. RegExp -> DFA via GenNFA
- 3. DFA -> RegExp via state elimnation Sipser pages 69-76
- 4. DFA -> RegExp via GenNFA

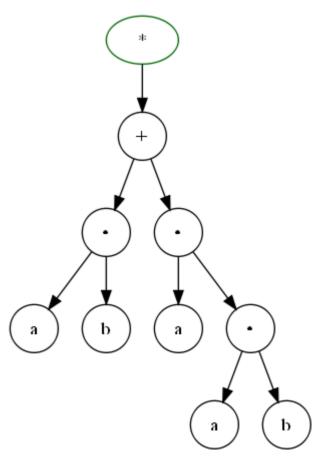
Alg 1 - RE to ε-NFA via delta-extension Sipser pages 67-69

- 1. Decompose a RegExp into its parts
 - data RegExp a = Lambda | Empty | One a | Union (RegExp a) (RegExp a) | Cat (RegExp a) (RegExp a) | Star (RegExp a)
- 2. Small parts make simple DFAs
- 3. Combine smaller parts by merging the delta functions of both parts, and by extending the merger (if necessary) with new transitions, and or new states.

RE as Trees

Every RE has a tree like structure. We process the tree bottom-up, strating from the leaves.

"(ab+aab)*"

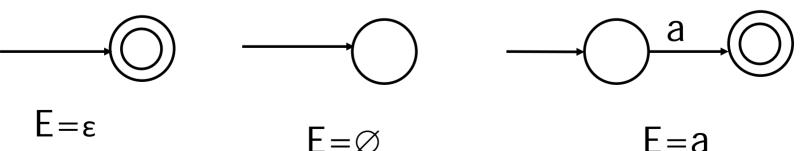


Small (leaf) Cases

Suppose E is a given regular expression. The construction of the automaton A such that L(RE)=L(A) is defined by induction on the structure of RE.

Base Case: There are three base cases:

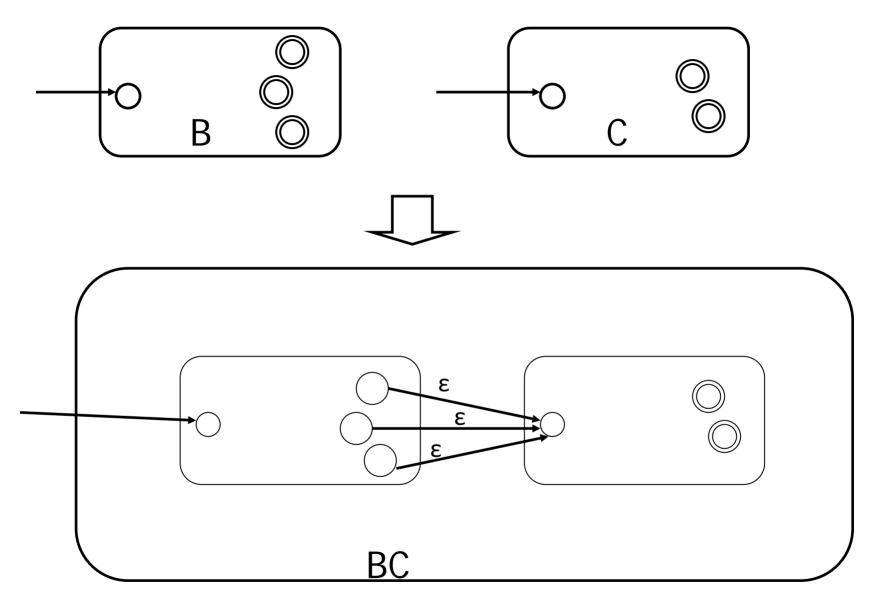
 $E=\varepsilon$, $E=\emptyset$, and E=a, where $a\in\Sigma$. Here are the corresponding automata.



Induction Step

There are three cases to consider

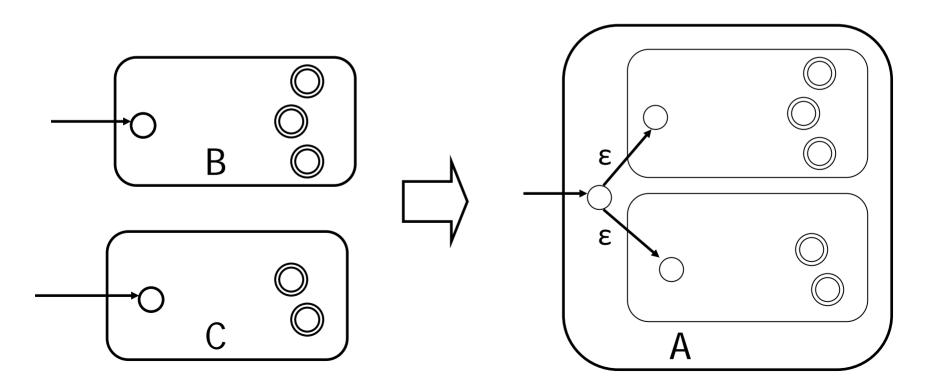
- Case 1: E=FG. Suppose (Ind. Hyp.) we have automata B and C such that L(F)=L(B) and L(G)=L(C).
- Let A be the automaton obtained by taking states and transitions of B and C together,
- Then add Λ -transitions from all final states of B to the start state of C (delta-extension).
- Then declare the start state (of the new automata) to be the start state of B.
- The final states (of the new automata) to be the final states of C.



We need to check that L(A)=L(B)L(C); it will follow then that L(A)=L(E)

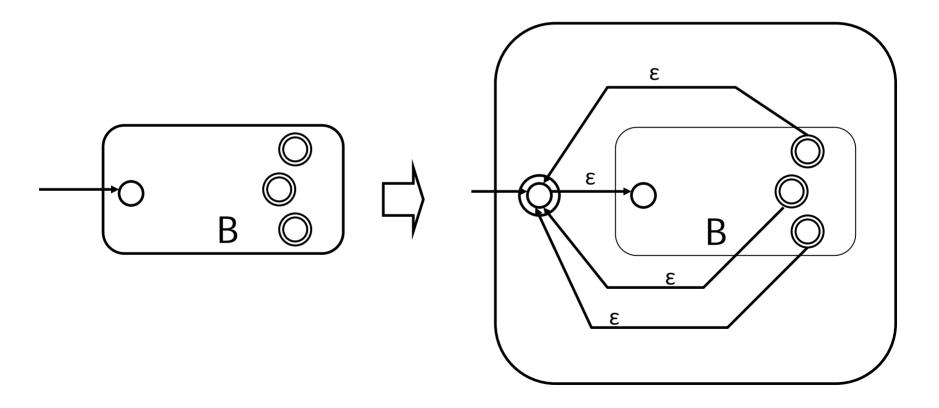
Case 2: E=F+G

Again, take F,G such that L(F)=L(B) and L(G)=L(C). Get A by adding a new start state and ε -transitions from the new state to the start states of B and C. Check that $L(A)=L(B) \cup L(C)$!



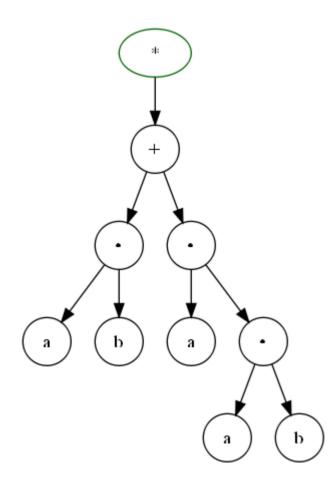
Case 3: E = F*

Take B such that L(B)=L(F) and define A as in the picture. Check that $L(A)=L(B)^*$.



Exercise

Exercise. Construct an ε-NFA accepting the language of the regular expression (ab+aab)*

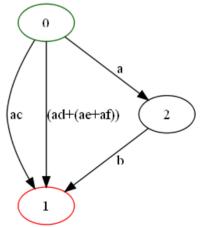


Definition - Generalized NFA

Generalize DFA so that every transition is a regular expression rather than a letter of the alphabet.

An GenNFA is a quintuple $A=(Q,\Sigma,s,F,\delta)$, where the first four components are as in a DFA, and the transition function labels arcs between states with regular expressions.

 $δ: Q × Q \longrightarrow \text{RegExp}(Σ)$



Alg 2 - RegExp to DFA via GenNFA (not covered in Sipser)

Given a RegExp: ab+ac+ad+ae+af

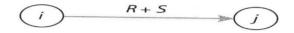
- 1. Construct a simple GenNFA with two states with one arc between the two states labeled with the regular expression.
- 2. The source of the arc is the start state
- 3. The target of the arc is the final \bigcirc

(ab+(ac+(ad+(ae+af))))

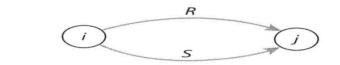
1

Extend the GenNFA

- **1.** If an edge is labeled with \emptyset , then erase the edge.
- 2. Transform any diagram like



into the diagram

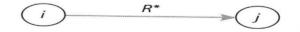


3. Transform any diagram like

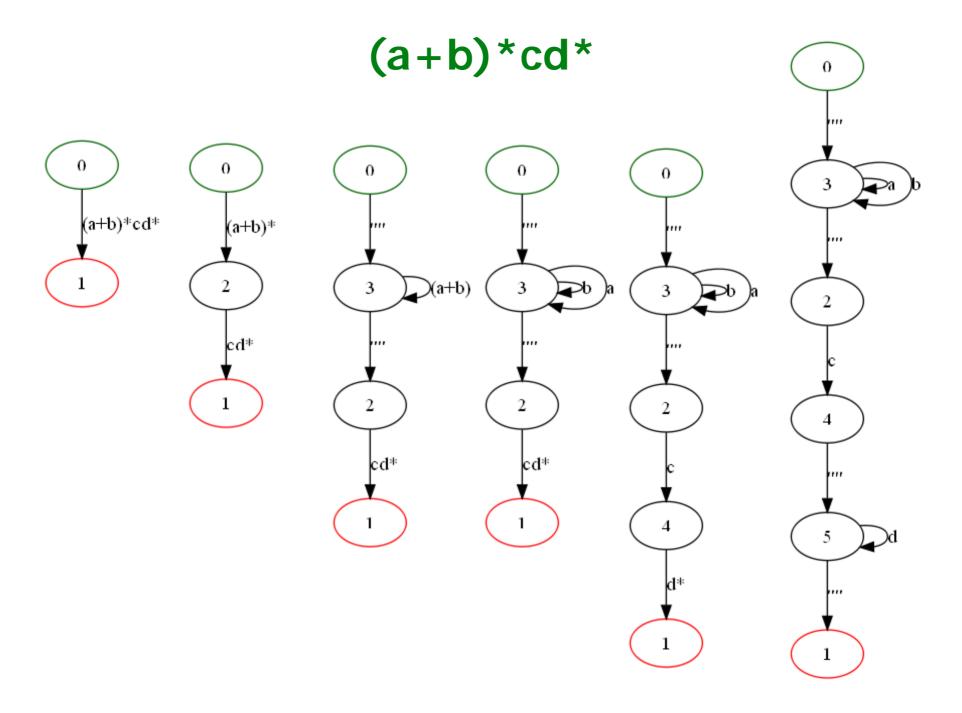
14.10

into the diagram

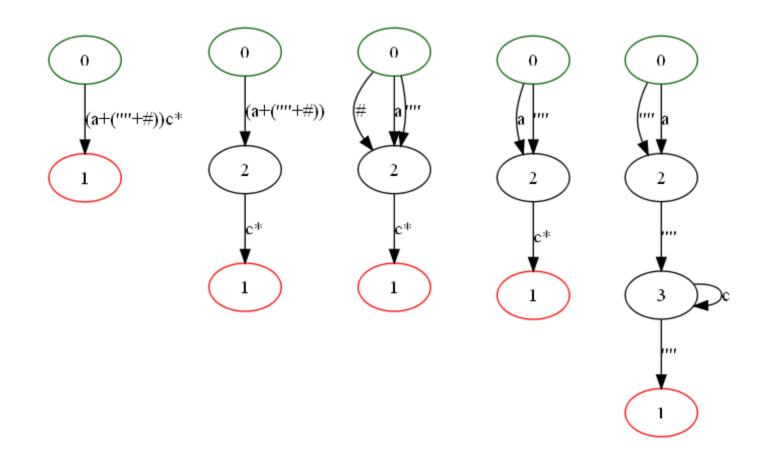
4. Transform any diagram like



into the diagram

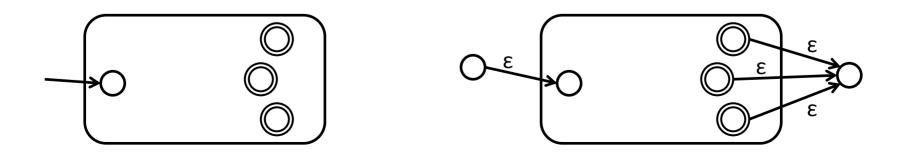


$(a+\Lambda+\emptyset)c^*$



Alg 3 - From DFA to RE by state elimination (Sipser pages 69-76)

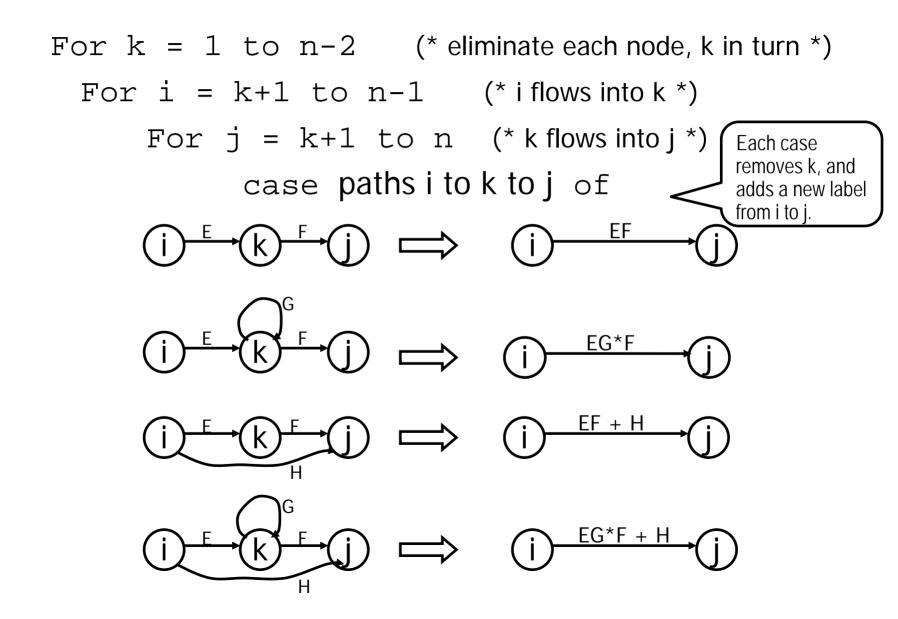
- The last construction was in fact algorithmic in both directions. We can improve the algorithm as follows. With an input NFA A, it will produce a regular expression E such that L(E)=L(A).
- 2. First we *standardize* the automaton A so that:
 - there is only one final state
 - no arcs go out of the final state
 - no arcs come into the initial state
- 3. Do this by using ε -transitions



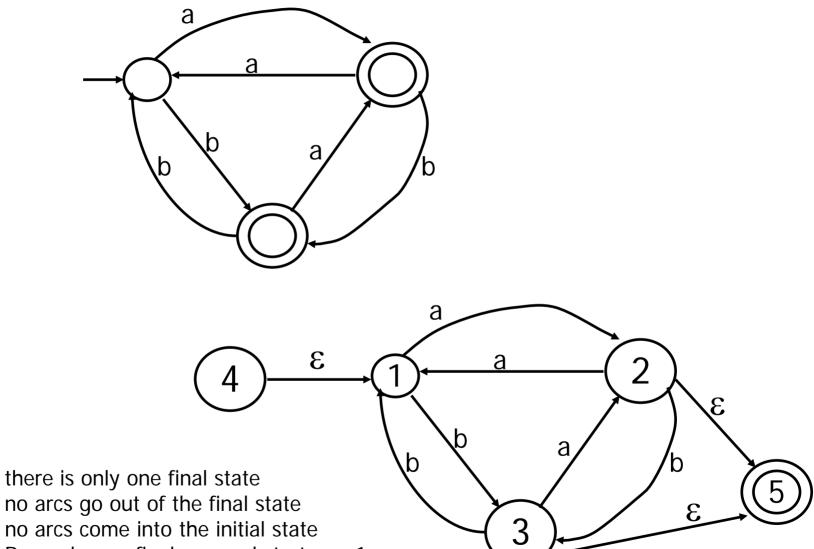
Assume the initial and final states are n-1 and n. We eliminate the states 1,2,...,n-2 one by one, producing intermediate automata whose arcs are *labeled by regular expressions* (i.e GenNFA).

We end up with an automaton that has two states n-1 and n, and only one arc (from n-1 to n) whose label is the required regular expression E.

Algorithm



Example



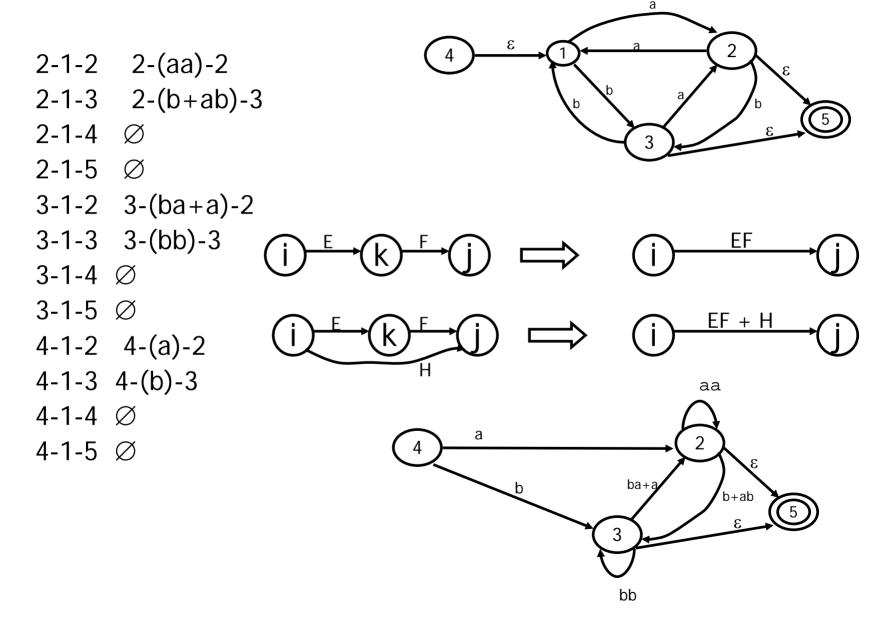
4. Renumber so final = n and start = n-1

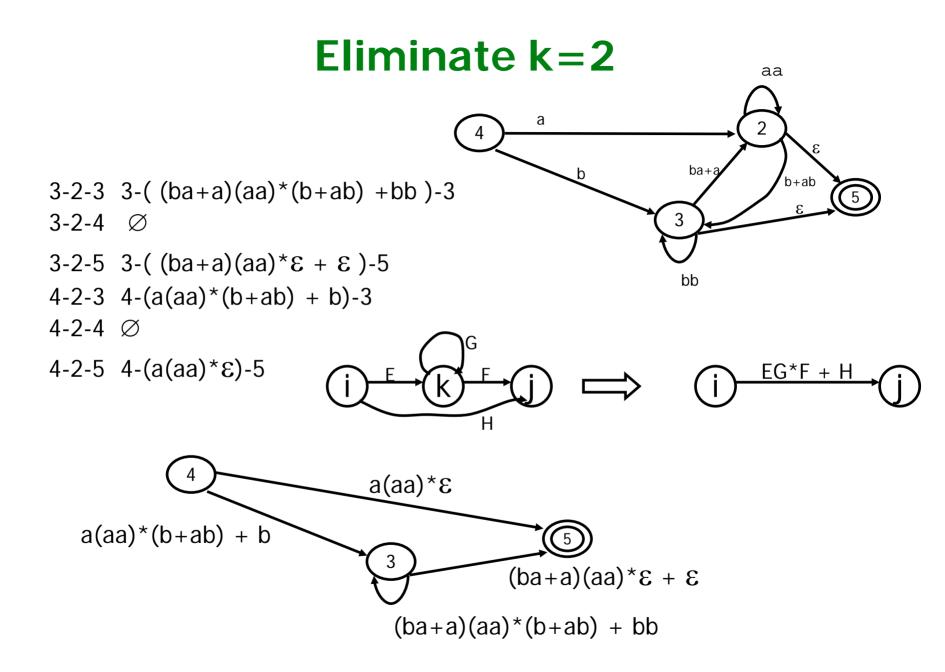
1.

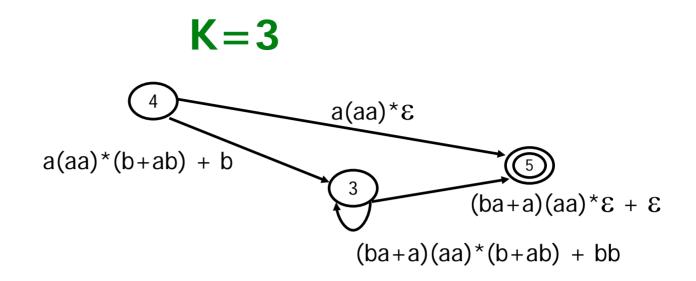
2.

3.

Eliminate k=1



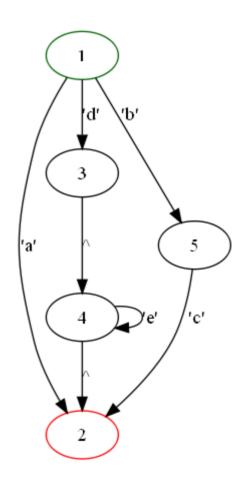


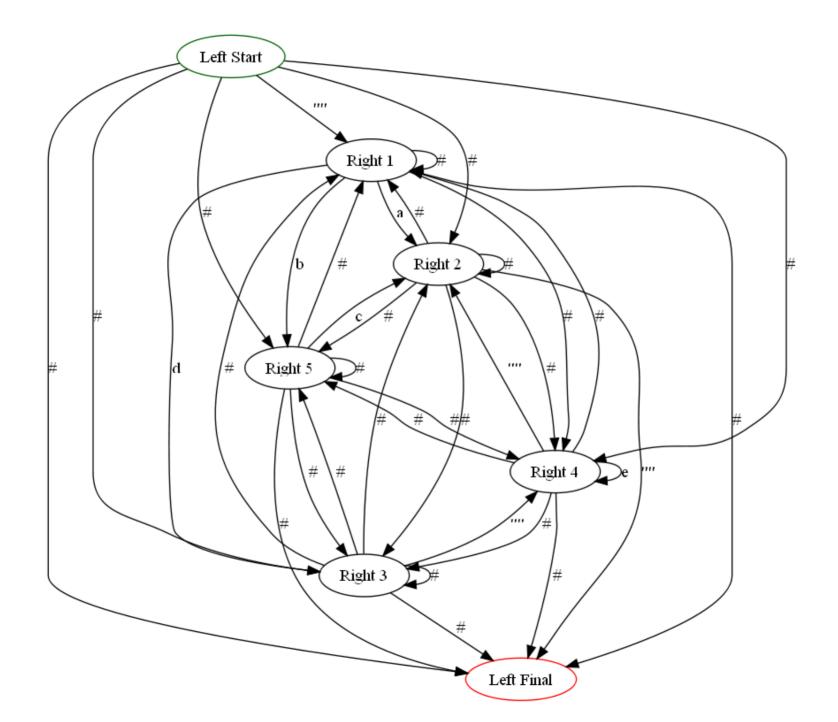


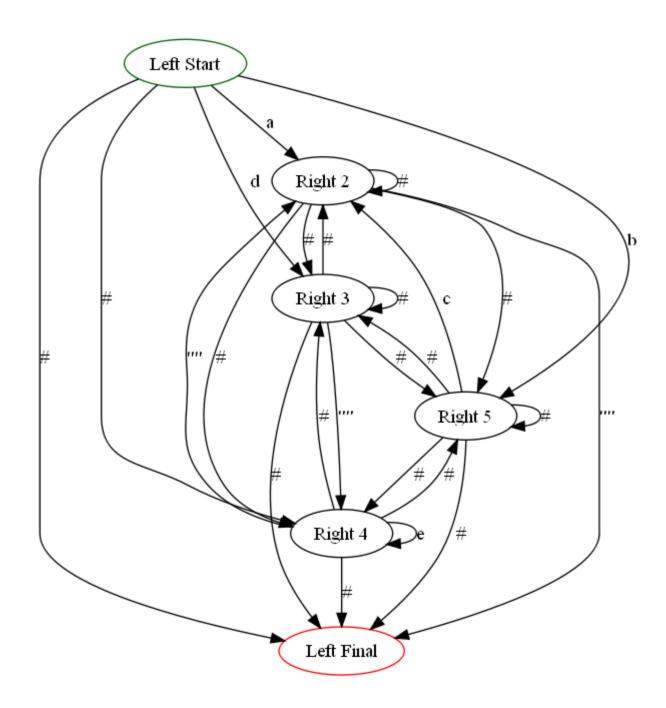
4-3-4
$$\varnothing$$

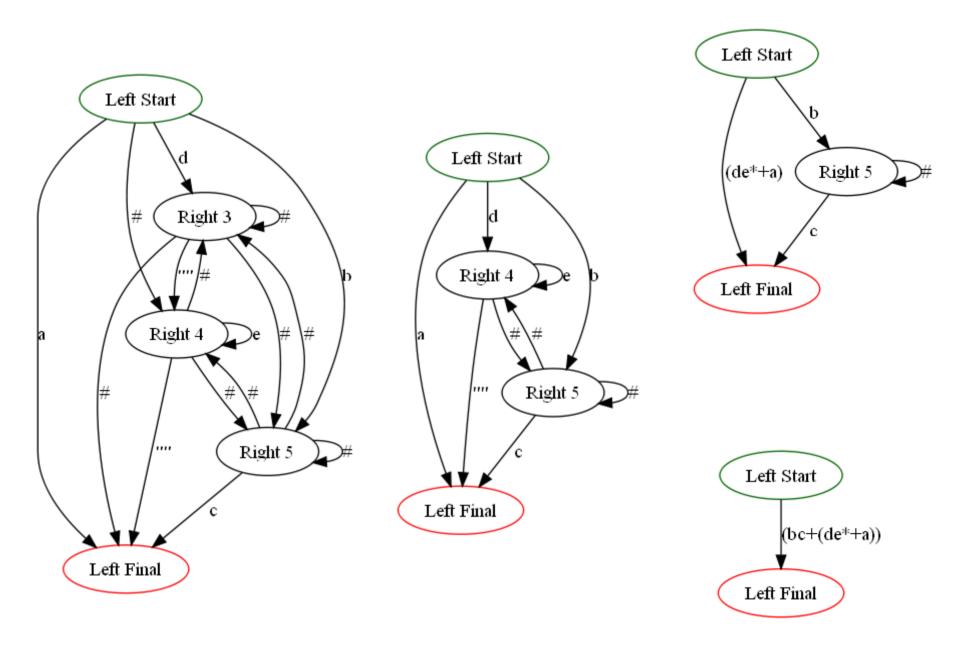
4-3-5 4-((a(aa)*(b+ab) + b)
((ba+a)(aa)*(b+ab) + bb)*
((ba+a)(aa)* $\varepsilon + \varepsilon$) + a(aa)* ε)-5

Another example









Alg 4 - From DFA to RE via path labels

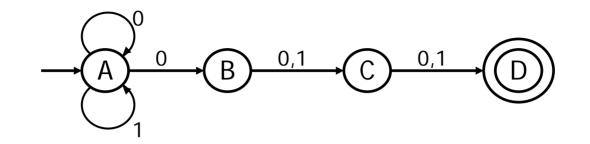
Suppose A is a given DFA. Our goal is to find a regular expression E such that L(E)=L(A).

Assume the state set of A is {1,2,...,n}\$. Let L_{ij} be the language consisting of *labels of all paths from i to j*.

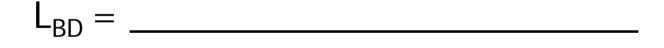
Note that $L(A) = \bigcup_{q \in F} L_{sq}$ s is the start state, F is the set of final states, L_{sq} is the labels of all paths from s to q

We'll be done if we can find regular expressions E_{ij} such that $L_{ij} = L(E_{ij})$.

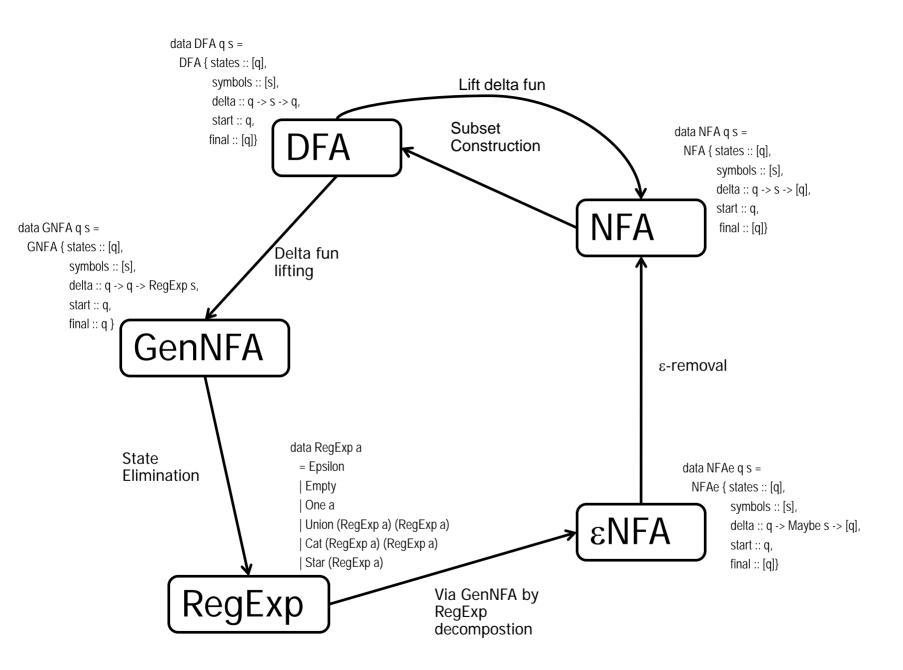
Exercise: Compute



$$L_{BC} = \{"0", "1"\}$$



L_{AD} = _____



Decidability of the Regular Languages

Since we can produce an equivalent DFA for any regular expression or ε-NFA, we will know how to recognize whether any two given representations of regular languages are equivalent.

Transform both into into DFAs: X and Y Minimize X and Y to Xmin and Ymin Test if Xmin and Ymin are isomorphic. (problem 1.52, page 91 Sipser)