
Computability  
via  

 Recursive Functions 



Church’s Thesis 

• All effective computational systems are 
equivalent! 

• To illustrate this point we will present the 
material from chapter 4 using the partial 
recursive functions, rather than Turing machines. 
 

• We believe the arguments we will make are 
easier to follow than the Turing machine 
arguments. 



Building blocks of Computability Theory 

• A syntactic notion of program, where each program 
can be described as a number, and all programs can be 
written down as list of numbers. 
 

• The ability to write down the trace of a computation 
that can be verified by a series of simple (terminating) 
steps. 
 

• Having a large enough set of programs, in particular 
there needs to be a universal program that can read a 
program and its input and generate its output. 



“Implementing” the 
 Primitive Recursive Programs 

• We have argued that the Primitive Recursive 
programs are simple yet very expressive 

• Expressive enough to supply (almost) all the 
building blocks of computability theory 
 

• We demonstrate this by giving each block an 
exact implementation 

• We implement these in Haskell so we can run 
them. 



Describing the PR functions as Haskell data 

data PrimRec  
        = Z 
        | S     
        | P Int 
        | C PrimRec [PrimRec] 
        | PR PrimRec PrimRec 

 
• By design, this is similar to our context free grammar 

describing the primitive recursive functions 
• This Haskell datatype exactly describes an inductively 

defined set. 

Our grammar 
Term  → Z 
            |   S  
            |   P n                                                nth projection 
            |   C Term  [ Term1, … ,Termn ]      composition 
            |   PR  Term  Term                    primitive recursion 
             |  ( Term )                                           grouping 



An interpreter 
eval :: PrimRec -> [Integer] -> Integer 
eval Z _     = 0 
eval S [x]   = x+1 
eval S _     = 0 -- default value for erroneous case 
eval (P n) xs | n <= length xs = nth n xs 
eval (P n) xs = 0 -- default value for erroneous case 
eval (C f gs) xs = eval f (map (\g -> eval g xs) gs) 
eval (PR g h) (x:xs) =  
   if x==0 then eval g xs 
           else eval h ((x-1) : eval (PR g h) ((x-1):xs) : xs) 
eval (PR _ _) [] = 0  -- default value for erroneous case 
 
nth _ []    = 0 -- default value for erroneous case 
nth 0 _     = 0 -- default value for erroneous case 
nth 1 (x:_) = x 
nth (n) (_:xs) = nth (n-1) xs 

Defined for every PrimRec  every 
input of any length, returns 0 for ill-
formed terms where aritys don’t 
match 



Pairing functions 
• Assign a unique integer to every pair of 

integers. 
• Recover the pair from the result 

0 1 2 3 4 5 6 

0 1 3 6 10 15 21 28 

1 2 5 9 14 20 27 

2 4 8 13 19 26 

3 7 12 18 25 

4 11 17 24 

5 16 23 

6 22 



Haskell functions 
pair :: Integer -> Integer -> Integer 
pair k1 k2 = ((k1 + k2) * (k1 + k2 +1) `div` 2) + k2 

 
• The pairs can be deconstructed by this code fragment: 

 
unpair :: Integer -> (Integer,Integer) 
unpair z = let w = (squareRoot (8*z + 1) - 1)  
                      `div`  
                    2  
               t = (w * w + w) `div` 2 
               y = z - t 
               x = w - y 
           in (x, y) 



Pairing to encode Lists 

• []   (0, 0)     0 
• [2]    (1, (2, (0,0)))    13 
• [2,3]  (1, (2, (1, (3, (0, 0)))))  246751 
• [2,3,4]  (1, (2, (1, (3, (1, (4, (0,0)))))))  

  94523914127548123793040376 
• Rules 

– Nil is the pair (0,0) 
– (x:xs) is the nested pair  (1,(x, encoding of xs)) 
– Recall [1,3,5]    is      (1 : (3 : (5 : []))) 



Haskell code 
eList :: [Integer] -> Integer 
eList [] = pair 0 0 
eList (x:xs) = pair 1 (pair x (eList xs)) 
 
dList :: Integer -> [Integer] 
dList l = let (t,c) = unpair l 
              (h, tl) = unpair c 
          in case t of 
             0 -> [] 
             1 -> h:(dList tl) 
             _ -> []  -- make it total (but nonsense) 

[2,3]   
(1, (2, (1, (3, (0, 0))))) 



Extending to other data 

• We can use pairing to encode any inductively 
defined data set 
 

• In particular we can use paring to endode the 
PrimRec datatype of Haskell 



ePR :: PrimRec -> Integer 
ePR Z = pair 0 0 
ePR S = pair 1 0 
ePR (P i) = pair 2 (toInteger i) 
ePR (C f gs) = pair 3 (pair (ePR f) (eList (map ePR gs))) 
ePR (PR g h) = pair 4 (pair (ePR g) (ePR h)) 
 
dPR x = let (t,b) = unpair x 
            (b1,b2) = unpair b -- note:  Lazy 
        in case t of 
           0 -> Z 
           1 -> S 
           2 -> P (fromInteger b) 
           3 -> C (dPR b1) (map dPR (dList b2)) 
           4 -> PR (dPR b1) (dPR b2) 
           _ -> Z 

data PrimRec  
= Z 
 | S     

     | P Int 
                   | C PrimRec [PrimRec] 
                  | PR PrimRec PrimRec 



Example 

• Plus = PR (P 1) (C S [P 2]) 
 
(4,((2,1),(3,((1,0),(1,((2,2),(0,0))))))) 
 
4511739842654672905730185440573223378237806974280320 
 
dPR 

4511739842654672905730185440573223378237806974280320 
 
PR (P 1) (C S [P 2]) 

 
 

A cons cell (x:xs) 

The empty list [] 



Are there non-Primitive Recursive Functions? 

x dPR x 0 1 2 3 4 5 6 7 8 9 10 

0 Z 0 0 0 0 0 0 0 0 0 0 0 

1 S 1 2 3 4 5 6 7 8 9 10 11 

2 Z 0 0 0 0 0 0 0 0 0 0 0 

3 P 1 0 1 2 3 4 5 6 7 8 9 10 

4 S 1 2 3 4 5 6 7 8 9 10 11 

5 Z 0 0 0 0 0 0 0 0 0 0 0 

6 C Z [] 0 0 0 0 0 0 0 0 0 0 0 

7 P 1 0 1 2 3 4 5 6 7 8 9 10 

8 S 1 2 3 4 5 6 7 8 9 10 11 

9 Z 0 0 0 0 0 0 0 0 0 0 0 

10 PR Z Z 0 0 0 0 0 0 0 0 0 0 0 

  dPR x     applied to   the number on top 

The red numbers on the diagonal show the result of 
applying  ith function to i. 



diagonal x =  
    (eval p (ncopies (arity p) x)) 
   where p = dPR x 
 
notdiagonal x = 1 + diagonal x 

 
• Argue why notdiagonal is not primitive recursive 



Argument 
• Proof by contradiction 
• Assume notdiagonal was primitive recursive 
• Then there is some j such that  

– ePr  j = notdiagonal                             eval (ePr i) i 
 

We see 
diagonal  j = w 
notdiagonal  j = w 
 
But we defined  
   notdiagonal x = diagonal x + 1 
So we have a contradiction 

x ePr  x 0 1 … j … 

0 Z 0 0 … 0 … 

1 S 1 2 … J+1 … 

… 

J notdiagonal w 

… 



What facts did we assume? 
• Primitive recursive functions are total 
• There  exists  an eval function 

– Given a PrimRec and arguments returns the result 
• There is a function from numbers to programs 

– ePR 
 

• An effective enumeration of a set of total-functions is a 
mapping from the natural numbers onto the set of 
funtions;    f1, f2, … fn, together with a computable 
function eval such that  
– (eval i x = fi(x)) 



Theorem 

• Every effective enumeration is incomplete. That is 
there exist some total computable functions 
which are not included in the enumeration. 
 

• Corrollaries 
– There is no effective enumeration of the computable 

functions 
– Any enumeration of the computable functions must 

include some partial functions! 



Pairing is primitive recursive 
• There are functions in PrimRec that denote the 

pairing functions. 
 

pair :: Integer -> Integer -> Integer 
pair k1 k2 = ((k1 + k2) * (k1 + k2 +1) `div` 2) + k2 
 
unpair :: Integer -> (Integer,Integer) 
unpair z = let w = (squareRoot (8*z + 1) - 1)  
                      `div`  
                    2  
               t = (w * w + w) `div` 2 
               y = z - t 
               x = w - y 
           in (x, y) 

 

• We know from the homework that most of the parts 
of pair and unpair are in PrimRec. What ones are 
missing? 



Bounded search 

div x y = { find the smallest z  
               | (z == x) || ((y*z <= x) && (x < y*(z+1)))} 
 
sqrt x = { find the smallest  z  
              | (z == x) || ((z*z <= x) && (x < (z+1)*(z+1)))} 
A search that is bounded by a known value. 
This operation, which we call bmin is primtive recursive. In 

fact a definition for it is given in Appendix   A.2 
Thus we can define  div and sqrt as primitive recursive 



pair 

pair k1 k2 = ((k1 + k2) * (k1 + k2 +1) `div` 2) + k2 
 
pair = C plus [C div [C times [C plus [P 1, P 2], 
                               C S [C plus [P 1, P 2]]], 
                      mkconst 2], 
               P 2] 
 



unpair 
unpair z = let w = (squareRoot (8*z + 1) - 1) `div` 2  
               t = (w * w + w) `div` 2 
               y = z - t 
               x = w - y 
           in (x, y) 
 
w = C div [C pred [C sqrt [C S [C times [mkconst 8, P 1]]]],  
           mkconst 2] 
t = C div [C plus [C times [w,w],w], mkconst 2] 
pi2 = C monus [P 1,t] 
pi1 = C monus [w,pi2] 
 
unpair x = (pi1 x, pi2 x) 



Building Blocks 

• A syntactic notion of program, where each 
program can be described as a number, and all 
programs can be written down as list of 
numbers. 

• We can now provide the first building block 
using the primitive recursive functions 

• Here are the first 11 functions 
• [Z, S, Z, P 1, S, Z, C Z [], P 1, S, Z, PR Z Z,  …] 
• Why do some functions appear twice? 

 



Partial Recursive programs 
data MuR = Z 

         | S     

         | P Int 

         | C MuR [MuR] 

         | PR MuR MuR 

         | Mu MuR 

 

eval :: MuR -> [Integer] -> Integer 

eval Z _ = 0 

eval S (x:_) = x+1 

eval S _  = 0 -- relaxed 

eval (P n) xs = nth n xs 

eval (C f gs) xs = eval f (map (\g -> eval g xs) gs) 

eval (PR g h) (0:xs) = eval g xs 

eval (PR g h) (x:xs) = eval h ((x-1) : eval (PR g h) ((x-1):xs) : xs) 

eval (PR _ _) [] = 0  -- relaxed 

eval (Mu f) xs = try_from f xs 0 

 

try_from f xs n = if eval f (n:xs) == 0 then n else try_from f xs (n+1) 



Properties 
• Like PrimRec with one additional operator Mu 

 
• Unlike for PrimRec, eval is not total 

 
eval (Mu f) xs = try_from f xs 0 
 
try_from f xs n =  
  if eval f (n:xs) == 0  
     then n 
     else try_from f xs (n+1) 

 



Partial Recursive programs are Turing Complete 

• Partial recursive functions can simulate TM 
– We can represent TM using numbers using partial recursive 

pairing 
– We can represent TM configurations and computation 

histories using pairing 
– We can write a total predicate, T,  (i.e. it doesn’t use Mu) 

such that  
• T machine input history = 1   if the machine history is a halting history 

• T machine input history = 0   If the machine history is not a halting history 

– We can write a total function, U, that given a machine, a 
halting history, that returns the final output 

– Given a TM: e, an input: x,  we can use unbounded search 
that return the least y such that T(e,x,y) holds.  Note that like 
a TM, this might not halt because it does use Mu operator 



Traces 

• For every computation system we defined 
acceptance by the existence of a trace 
 

• Acceptance by DFA by a sequence of  states 
• Acceptance of CFG by a sequence of 

derivations 
• Acceptance by PDA  
• Acceptance by TM 



DFA trace 
• A DFA  = (Q,Σ,δ,q0,F), accepts a string  
•     w = “w1w2…wn” iff 

 
– There exists a sequence of states  [r0, r1, … rn]  
                  with 3 conditions 
1. r0 = q0 

2. δ(ri,wi+1) = ri+1 
3. rn+1 ∈ F 
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Acceptance is about 
finding a sequence. 

  
How do we find such 

a sequence? 



CFG Trace 
• The single-step derivation relation ⇒ on (V∪ T)* is defined by: 

 
1. α ⇒ β iff  β  is obtained from α by replacing an occurrence 

of the lhs of a production with its rhs. That is, α'Aα'' ⇒ α'γα''  
is true iff  A → γ  is a production. We say α'Aα''  yields  α'γα''  
 

2. We write  α ⇒∗ β when β can be obtained from α through a 
sequence of several (possibly zero) derivation steps.  

 
3. The language of the CFG , G, is the set 
•  L(G) = {w∈T* | S ⇒∗ w}   (where S is the start symbol of G) 

 
 S ⇒∗ w means there exists a sequence 
 S ⇒ W1 ⇒ W2 ⇒  …  ⇒ W 



PDA trace 
• Suppose a string w can be written:   w1 w2 … wm  

• Wi ∈ Σε     Some of the wi are allowed to be ε 
• I.e.  One may write “abc”  as      a ε b c ε 

• If there exist two sequences  
• r0 r1 … rm  ∈  Q 
• s0 s1 … sm ∈  Γ∗     (The si represent the stack contents at step i) 

 

1. r0=q0   and    s0 = ε 
2.  (ri+1,α) ∈ δ(ri,wi+1,A)  

– si = Aβ   si+1 = αβ 
3. rm ∈ F 

The initial state and stack 

Corresponding elements in 
the sequences are related to 
the next via the transition 
function. 

The last state in the sequence is in the Final states. 



TM  Trace 

• Recall a configuration (ID) has the form  α q β  
– where  α, β ∈ Γ* and q ∈ Q.  
– The string  α  represents the tape contents to the left 

of the head.  
– The string  β  represents the non-blank tape contents 

to the right of the head, including the  currently 
scanned cell. 

– q represents the current state 
 

• Recall configurations c1,c2 are related by   
– c1 |- c2 
– If the TM can legally move from c1 to c2 

 
• A computation history (c1, … , cn) is a sequence of  

|- related configurations (each ci |-  ci+1 ) 



Accepting (rejecting) Histories 
• A computation history (c1, … , cn) is called an 

accepting history if c1 is a start configuration 
and cn is an accepting configuration 
 

• A computation history (c1, … , cn) is called an 
rejecting history if c1 is a start configuration 
and cn is an rejecting configuration 
 

If a TM does not halt on a given input, there 
does not exist an accepting (rejecting) history. 

 
 



Traces for recursive functions 

• A trace for primitive (partial) recursive 
functions is not a sequence but a Tree. 

• Each node in the tree is labeled with a triple 
– (program, input,result) 

• Compound programs (C, PR, Mu) have 
subtrees. 

• In a Trace-tree, the subtrees are related by the 
computation rules. 



PR (P 1) (C S [P 2])  (2,3)  = 5 Program 
Input 
Result 

PR (P 1) (C S [P 2]) (1,3) = 4 C S [P 2] (1,4,3) = 5 

S (4) = 5 P 2 (1,4,3) = 4 

PR (P 1) (C S [P 2]) (0,3) = 3 C S [P 2] (0,3,3) = 4 

S (3) = 4 P 2 (0,3,3) = 3 (P 1) (3) = 3 

f(0,x1, ..., xk) = h(x1,...,xk) 
f(Succ(n),x1, ..., xk)= g(n, f(n,x1,...,xk), x1,...,xk) 

f(x1,...xn) = h( g1(x1,...,xn), ... ,gm(x1,...,xn) ) 



Well formedness of trace trees is 
computable by a total function 

• We encode trace trees by using pairing 
• We use the rules of computation to relate a node 

and its subtrees. 
 

• Construction of trace trees is computable by a 
partial function.  
– If a computation halts we can compute its trace tree 
– If it doesn’t the computation of the trace tree will also 

loop 



Big result 

• eval prog (input) = result    --- Partial 
• trace prog (input) = trace-tree   --- Partial 
• verify prog input trace-tree = boolean  -- Total 

 
• valid program input result trace =  
            (verify prog input trace) && 
            (last trace = result)                                    --- Total 

 
• Theorem for n-ary function f 

– eval f (n1,…, nk) = w 
– If and only if 
– There exists a trace-tree  c, such that (valid f (n1,…, nk)  w c) 

 



The halting problem 
• Use diagonalization to show that there does not exist a total partial 

recursive program, halt, such that  halt (dMuR f) n is True if 
and only if  eval f n is defined. 
 

• Suppose halt exists, then use it to define 
Opposite(x,n) =  
   if halt(x,n) 
      then loop  
      else 0 
 
notdiagonal x = opposite (dMuR x) x 
    
  



halt(p,n) True False  (looping) 

opposite(p,n) Loop 0 

notdiagonal(n) Loop 0 Where p = dMuR n 

halt(notdiagonal,k) True False  (looping) 

opposite(notdiagonal,k) Loop 0 

notdiagonal(k) = Loop 0 

halt(p,i) True False  (looping) 

opposite(p,i) Loop 0 

How halt(p,i) and  opposite(p,i) are related. 

How How halt(p,n) and  opposite(p,n)  and notdiagonal(n) are related. 

The curious case when all are applied to notdiagonal, whose index is k 
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