## Computability

via
Recursive Functions

## Church's Thesis

- All effective computational systems are equivalent!
- To illustrate this point we will present the material from chapter 4 using the partial recursive functions, rather than Turing machines.
- We believe the arguments we will make are easier to follow than the Turing machine arguments.


## Building blocks of Computability Theory

- A syntactic notion of program, where each program can be described as a number, and all programs can be written down as list of numbers.
- The ability to write down the trace of a computation that can be verified by a series of simple (terminating) steps.
- Having a large enough set of programs, in particular there needs to be a universal program that can read a program and its input and generate its output.
- We have argued that the Primitive Recursive programs are simple yet very expressive
- Expressive enough to supply (almost) all the building blocks of computability theory
- We demonstrate this by giving each block an exact implementation
- We implement these in Haskell so we can run them.


## Describing the PR functions as Haskell data

data PrimRec


P Int
= Z
S

C PrimRec [PrimRec] PR PrimRec PrimRec

- By design, this is similar to our context free grammar describing the primitive recursive functions
- This Haskell datatype exactly describes an inductively defined set.


## An interpreter

Defined for every PrimRec every input of any length, returns 0 for illformed terms where aritys don't match

```
eval :: PrimRec -> [Integer] -> Integer
eval Z _ = 0
eval S [x] = x+1
eval S _ = 0 -- default value for erroneous case
eval (P n) xs | n <= length xs = nth n xs
eval (P n) xs = 0 -- default value for erroneous case
eval (C f gs) xs = eval f (map (\g -> eval g xs) gs)
eval (PR g h) (x:xs) =
    if x==0 then eval g xs
        else eval h ((x-1) : eval (PR g h) ((x-1):xs) : xs)
eval (PR _ _) [] = 0 -- default value for erroneous case
nth _ [] = 0 -- default value for erroneous case
nth 0 _ = 0 -- default value for erroneous case
nth 1 (x:_) = x
nth (n) (_:xs) = nth (n-1) xs
```


## Pairing functions

- Assign a unique integer to every pair of integers.
- Recover the pair from the result

|  |  |  |  |  | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 5 | 6 |  |  |  |  |  |
| 0 | 1 | 3 | 6 | $10^{7}$ | $15^{7}$ | $21^{7}$ | $28^{7}$ |
| 1 | 2 | 5 | 9 | 14 | 20 | $27^{7}$ |  |
| 2 | 4 | 8 | 13 | 19 | 25 |  |  |
| 3 | 7 | 12 | 18 | 25 |  |  |  |
| 4 | 11 | 17 | 24 |  |  |  |  |
| 5 | 16 | 23 |  |  |  |  |  |
| 6 | 22 |  |  |  |  |  |  |

## Haskell functions

```
pair :: Integer -> Integer -> Integer
pair k1 k2 = ((k1 + k2) * (k1 + k2 +1) `div` 2) + k2
```

- The pairs can be deconstructed by this code fragment:

```
unpair :: Integer -> (Integer,Integer)
unpair z = let w = (squareRoot (8*z + 1) - 1)
    `div`
        2
    t = (w * w + w) `div` 2
    y = z - t
    x = w - y
    in (x, y)
```


## Pairing to encode Lists

- []
- [2]
$(0,0)$
(1, (2, (0,0))) 13
- [2,3]
(1, (2, (1, (3, (0, 0))))) 246751
- [2,3,4] (1, (2, (1, (3, (1, (4, (0,0))))))) 94523914127548123793040376
- Rules
- Nil is the pair $(0,0)$
- ( $x: x s$ ) is the nested pair ( $1,(x$, encoding of $x s)$ )
- Recall $[1,3,5]$ is $(1:(3:(5:[])))$


## Haskell code

eList :: [Integer] -> Integer [2,3]
$(1,(2,(1,(3,(0,0)))))$
eList [] = pair 00
eList (x:xs) = pair 1 (pair $x$ (eList xs))
dList :: Integer -> [Integer] dList $1=$ let ( $\mathrm{t}, \mathrm{c}$ ) = unpair 1
(h, tl) $=$ unpair $c$
in case $t$ of

$$
0 \text {-> [] }
$$

$$
1 \text {-> h:(dList tl) }
$$

_ -> [] -- make it total (but nonsense)

## Extending to other data

- We can use pairing to encode any inductively defined data set
- In particular we can use paring to endode the PrimRec datatype of Haskell

```
ePR :: PrimRec -> Integer
ePR Z = pair 0 0
ePR S = pair 1 0
ePR (P i) = pair 2 (toInteger i)
ePR (C f gs) = pair 3 (pair (ePR f) (eList (map ePR gs)))
ePR (PR g h) = pair 4 (pair (ePR g) (ePR h))
dPR x = let (t,b) = unpair x
    (b1,b2) = unpair b -- note: Lazy
    in case t of
        0 -> Z
        1 -> S
        2 -> P (fromInteger b)
        3 -> C (dPR b1) (map dPR (dList b2))
        4 -> PR (dPR b1) (dPR b2)
        _ -> Z
```


## Example

- Plus $=P R(P 1)(C S[P 2])$

```
A cons cell (x:xs)
```

(4,((2,1),(3,((1,0),(1,((2,2),(0,0)))))))
The empty list []
4511739842654672905730185440573223378237806974280320
dPR
4511739842654672905730185440573223378237806974280320

PR (P 1) (C S [P 2])

## Are there non-Primitive Recursive Functions?

dPRx applied to the number on top

| x | $\mathrm{dPR} \boldsymbol{x}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | Z | $\mathbf{0}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | S | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 2 | Z | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | P 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 4 | S | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 5 | Z | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | C Z [] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | P 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 8 | S | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 9 | Z | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10 | PR Z Z | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

The red numbers on the diagonal show the result of applying $\mathrm{i}^{\text {th }}$ function to i .
diagonal $x=$

## (eval p (ncopies (arity p) x)) where $\mathrm{p}=\mathrm{dPR} \mathrm{x}$

notdiagonal x = 1 + diagonal $x$

- Argue why notdiagonal is not primitive recursive


## Argument

- Proof by contradiction
- Assume notdiagonal was primitive recursive
- Then there is some j such that
- ePr $\mathrm{j}=$ notdiagonal

We see
diagonal $\mathrm{j}=\mathrm{w}$
notdiagonal $\mathrm{j}=\mathrm{w}$

| $\mathbf{x}$ | ePr $\mathbf{x}$ | 0 | 1 | $\ldots$ | j | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | Z | 0 | 0 | $\ldots$ | 0 | $\ldots$ |
| 1 | S | 1 | 2 | $\ldots$ | $\mathrm{~J}+1$ | $\ldots$ |
| $\ldots$ |  |  |  |  |  |  |
| J | notdiagonal |  |  |  | w |  |

But we defined
notdiagonal $\mathrm{x}=$ diagonal $\mathrm{x}+1$
So we have a contradiction

## What facts did we assume?

- Primitive recursive functions are total
- There exists an eval function
- Given a PrimRec and arguments returns the result
- There is a function from numbers to programs
- ePR
- An effective enumeration of a set of total-functions is a mapping from the natural numbers onto the set of funtions; $f_{1}, f_{2}, \ldots f_{n}$, together with a computable function eval such that
$-\left(e v a l i x=f_{i}(x)\right)$


## Theorem

- Every effective enumeration is incomplete. That is there exist some total computable functions which are not included in the enumeration.
- Corrollaries
- There is no effective enumeration of the computable functions
- Any enumeration of the computable functions must include some partial functions!


## Pairing is primitive recursive

- There are functions in PrimRec that denote the pairing functions.

```
pair :: Integer -> Integer -> Integer
pair k1 k2 = ((k1 + k2) * (k1 + k2 +1) `div` 2) + k2
unpair :: Integer -> (Integer,Integer)
unpair z = let w = (squareRoot (8*z + 1) - 1)
                        `div`
```



- We know from the homework that most of the parts of pair and unpair are in PrimRec. What ones are missing?


## Bounded search

$\operatorname{div} x y=\{$ find the smallest $z$

$$
\left.|(z==x)| \mid\left(\left(y^{*} z<=x\right) \& \&\left(x<y^{*}(z+1)\right)\right)\right\}
$$

sqrt $x=\{$ find the smallest $z$

$$
\left.|(z==x)| \mid\left(\left(z^{*} z<=x\right) \& \&\left(x<(z+1)^{*}(z+1)\right)\right)\right\}
$$

A search that is bounded by a known value.
This operation, which we call bmin is primtive recursive. In fact a definition for it is given in Appendix A. 2
Thus we can define div and sqrt as primitive recursive

## pair

pair $k 1 \mathrm{k} 2=((k 1+k 2) *(k 1+k 2+1) `$ div 2$)+k 2$ pair $=\mathrm{C}$ plus [ C div [C times [C plus [P 1, P 2],
C S [C plus [P 1, P 2]]],
mkconst 2],
P 2]

## unpair

```
unpair z = let w = (squareRoot (8*z + 1) - 1) `div` 2
    t = (w * w + w) `div` 2
    y=z-t
    x = w-y
    in (x, y)
w = C div [C pred [C sqrt [C S [C times [mkconst 8, P 1]]]],
    mkconst 2]
t = C div [C plus [C times [w,w],w], mkconst 2]
pi2 = C monus [P 1,t]
pi1 = C monus [w,pi2]
unpair \(x=(p i 1 x, p i 2 x)\)
```


## Building Blocks

- A syntactic notion of program, where each program can be described as a number, and all programs can be written down as list of numbers.
- We can now provide the first building block using the primitive recursive functions
- Here are the first 11 functions
- [Z, S, Z, P 1, S, Z, C Z [], P 1, S, Z, PR Z Z, ...]
- Why do some functions appear twice?


## Partial Recursive programs

```
data MuR = Z
    | S
    | P Int
    | C MuR [MuR]
    | PR MUR MUR
    | Mu MuR
eval :: MuR -> [Integer] -> Integer
eval Z _ = 0
eval S (x:_) = x+1
eval S _ = 0 -- relaxed
eval (P n) xs = nth n xs
eval (C f gs) xs = eval f (map (\g -> eval g xs) gs)
eval (PR g h) (0:xs) = eval g xs
eval (PR g h) (x:xs) = eval h ((x-1) : eval (PR g h) ((x-1):xs) : xs)
eval (PR _ _) [] = 0 -- relaxed
eval (Mu f) xs = try_from f xs 0
try_from f xs n = if eval f (n:xs) == 0 then n else try_from f xs (n+1)
```


## Properties

- Like PrimRec with one additional operator Mu
- Unlike for PrimRec, eval is not total
eval (Mu f) xs $=$ try_from $f$ xs 0
try_from $f$ xs $n=$
if eval $f(n: x s)==0$ then $n$ else try_from f xs (n+1)


## Partial Recursive programs are Turing Complete

- Partial recursive functions can simulate TM
- We can represent TM using numbers using partial recursive pairing
- We can represent TM configurations and computation histories using pairing
- We can write a total predicate, T, (i.e. it doesn't use Mu) such that
- T machine input history = 1 if the machine history is a halting history
- T machine input history $=0$ If the machine history is not a halting history
- We can write a total function, $U$, that given a machine, a halting history, that returns the final output
- Given a TM: e, an input: $x$, we can use unbounded search that return the least $y$ such that $\mathrm{T}(\mathrm{e}, \mathrm{x}, \mathrm{y})$ holds. Note that like a TM, this might not halt because it does use Mu operator


## Traces

- For every computation system we defined acceptance by the existence of a trace
- Acceptance by DFA by a sequence of states
- Acceptance of CFG by a sequence of derivations
- Acceptance by PDA
- Acceptance by TM


## DFA trace

- A DFA $=\left(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{q}_{0}, \mathbf{F}\right)$, accepts a string

$$
w=" w_{1} w_{2} \ldots w_{n} " \text { iff }
$$

- There exists a sequence of states $\left[r_{0}, r_{1}, \ldots r_{n}\right]$ with 3 conditions

1. $r_{0}=q_{0}$
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$
3. $r_{n+1} \in F$

Page 40 in Sisper

Acceptance is about finding a sequence.

How do we find such
a sequence?

## CFG Trace

- The single-step derivation relation $\Rightarrow$ on $(\mathrm{V} \cup \mathrm{T})^{*}$ is defined by:

1. $\alpha \Rightarrow \beta$ iff $\beta$ is obtained from $\alpha$ by replacing an occurrence of the Ihs of a production with its rhs. That is, $\alpha^{\prime} A \alpha^{\prime \prime} \Rightarrow \alpha^{\prime} \gamma \alpha^{\prime \prime}$ is true iff $A \rightarrow \gamma$ is a production. We say $\alpha^{\prime} A \alpha^{\prime \prime}$ yields $\alpha^{\prime} \gamma \alpha^{\prime \prime}$
2. We write $\alpha \Rightarrow^{*} \beta$ when $\beta$ can be obtained from $\alpha$ through a sequence of several (possibly zero) derivation steps.
3. The language of the CFG, G , is the set

- $L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} W\right\}$ (where $S$ is the start symbol of $G$ )

$$
\begin{aligned}
& S \Rightarrow{ }^{*} W \text { means there exists a sequence } \\
& S \Rightarrow W_{1} \Rightarrow W_{2} \Rightarrow \ldots \Rightarrow W
\end{aligned}
$$

## PDA trace

- Suppose a string $w$ can be written: $\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{m}}$
- $W_{i} \in \Sigma_{\varepsilon}$ Some of the $W_{i}$ are allowed to be $\varepsilon$
- le. One may write "abc" as a $\varepsilon$ bc $\varepsilon$
- If there exist two sequences
- $r_{0} r_{1} \ldots r_{m} \in Q$
- $\mathrm{s}_{0} \mathrm{~s}_{1} \ldots \mathrm{~s}_{\mathrm{m}} \in \Gamma^{*} \quad$ (The $\mathrm{s}_{\mathrm{i}}$ represent the stack contents at step i)

1. $r_{0}=q_{0}$ and $s_{0}=\varepsilon$

2. $\left(r_{i+1}, \alpha\right) \in \delta\left(r_{i}, w_{i+1}, A\right)$ $-s_{i}=A \beta \quad s_{i+1}=\alpha \beta$
3. $r_{m} \in$


> The last state in the sequence is in the Final states.

## TM Trace

- Recall a configuration (ID) has the form $\alpha \mathrm{q} \beta$
- where $\alpha, \beta \in \Gamma^{*}$ and $q \in Q$.
- The string $\alpha$ represents the tape contents to the left of the head.
- The string $\beta$ represents the non-blank tape contents to the right of the head, including the currently scanned cell.
- q represents the current state
- Recall configurations $\mathrm{c}_{1}, \mathrm{c}_{2}$ are related by
$-c_{1} \mid-c_{2}$
- If the TM can legally move from $\mathrm{c}_{1}$ to $\mathrm{c}_{2}$
- A computation history $\left(c_{1}, \ldots, c_{n}\right)$ is a sequence of $\mid$ - related configurations (each $c_{i} \mid-c_{i+1}$ )


## Accepting (rejecting) Histories

- A computation history $\left(c_{1}, \ldots, c_{n}\right)$ is called an accepting history if $\mathrm{c}_{1}$ is a start configuration and $\mathrm{c}_{\mathrm{n}}$ is an accepting configuration
- A computation history $\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right)$ is called an rejecting history if $\mathrm{c}_{1}$ is a start configuration and $\mathrm{c}_{\mathrm{n}}$ is an rejecting configuration

If a TM does not halt on a given input, there does not exist an accepting (rejecting) history.

## Traces for recursive functions

- A trace for primitive (partial) recursive functions is not a sequence but a Tree.
- Each node in the tree is labeled with a triple - (program, input,result)
- Compound programs (C, PR, Mu) have subtrees.
- In a Trace-tree, the subtrees are related by the computation rules.


```
\(f(0, x 1, \ldots, x k)=h(x 1, \ldots, x k)\)
\(f(\operatorname{Succ}(n), x 1, \ldots, x k)=g(n, f(n, x 1, \ldots, x k), x 1, \ldots, x k)\)
```

$$
f\left(x_{1}, \ldots x_{n}\right)=h\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

## Well formedness of trace trees is

 computable by a total function- We encode trace trees by using pairing
- We use the rules of computation to relate a node and its subtrees.
- Construction of trace trees is computable by a partial function.
- If a computation halts we can compute its trace tree
- If it doesn't the computation of the trace tree will also loop


## Big result

- eval prog (input) = result --- Partial
- trace prog (input) = trace-tree --- Partial
- verify prog input trace-tree = boolean -- Total
- valid program input result trace = (verify prog input trace) \&\& (last trace = result)
--- Total
- Theorem for $n$-ary function f
- eval $f\left(n_{1}, \ldots, n_{k}\right)=w$
- If and only if
- There exists a trace-tree $c$, such that (valid $\left.f\left(n_{1}, \ldots, n_{k}\right) w c\right)$


## The halting problem

- Use diagonalization to show that there does not exist a total partial recursive program, halt, such that halt (dMuR f) $n$ is True if and only if eval $f \mathrm{n}$ is defined.
- Suppose halt exists, then use it to define

Opposite(x,n) =
if halt(x,n)
then loop
else 0
notdiagonal $x$ = opposite (dMuR x) x

How halt( $p, i$ ) and opposite( $p, i$ ) are related.

| halt $(p, i)$ | True | False (looping) |  |
| :--- | :--- | :--- | :--- |
| opposite $(p, i)$ | Loop | 0 |  |

How How halt $(p, n)$ and opposite( $p, n$ ) and notdiagonal( $n$ ) are related.

| halt $(\mathrm{p}, \mathrm{n})$ | True | False (looping) |  |
| :--- | :--- | :--- | :--- |
| opposite( $\mathrm{p}, \mathrm{n})$ | Loop | 0 |  |
| notdiagonal( n$)$ | Loop | 0 | Where $\mathrm{p}=\mathrm{dMuR} \mathrm{n}$ |

The curious case when all are applied to notdiagonal, whose index is k

| halt(notdiagonal,k) | True | False (looping) |  |
| :--- | :--- | :--- | :--- |
| opposite(notdiagonal,k) | Loop | 0 |  |
| notdiagonal(k) $=$ | Loop | 0 |  |

