CFL Big Picture

Context Free Languages Conclusion

- We have studied the class of context free languages (CFL)
- We saw two different ways to express a CFL
 - 1. Context Free Grammar
 - 2. Push Down Automata
- We showed that some were equally expressive
 - We need non-deterministic PDA to express Context Free Grammars
 - Recall the construction of the PDA had only one state, and possible several transitions on the same Non-terminal.
- Some were easier to use than others to describe some languages

Acceptance

- Context free grammars
 The language of the CFG , G, is the set
 L(G) = {w∈T* | S ⇒* w} where
 S is the start symbol of G
 ⇒ is the single step relation between derivations
- Push down automata
 - Use of instantaneous descriptions (IDs) and the relation |- between IDs
 - Acceptance by final state
 - Acceptance by empty stack

Algorithms

- We studied algorithms to transform one description into another
 - 1. Context Free Grammar to PDA (Theorem 2.21 pg 115)
 - 2. PDA into Context Free Grammar (Lemma 2.27 pg 119)
- We studied how to transform grammars
 - 1. To remove ambiguity (layering)
 - 1. Non-ambiguous languages can have ambiguous grammars
 - 2. To transform into Chomsky Normal Form

Properties

- We saw that Regular Languages have many properties
- Closure properties
 - Union
 - Kleene star
 - Intersection
 - Complement
 - Reversal
 - Difference
 - Prefix

CFL Languages have fewer properties

- Closure properties
 - Union
 - Kleene star
 - Concat
- But we do have the intersection between CFL and RL produces a CFL

Closure Properties of CFL's

 The class of context-free languages is closed under these three operations: Union, Concatenation, Kleene Star

- Assumptions:
- Let $G_1 = (V_1, T_1, P_1, S_1)$ and $G_2 = (V_2, T_2, P_2, S_2)$
- be two CF grammars. Assume the sets of variables, V₁ and V₂ are disjoint.

Unio n

• A grammar for the union $L(G_1) \cup L(G_2)$ is

•
$$G=({S} \cup V_1 \cup V_2, T_1 \cup T_2, P, S)$$

• where P consists of productions in P_1 and P_2 together with $S \rightarrow S_1 \mid S_2$

Concatenatio

n

A grammar for the concatenation
 L(G₁)L(G₂) is

- $G=({S} \cup V_1 \cup V_2, T_1 \cup T_2, P, S)$
- where P consists of productions in
- P_1 and P_2 together with $S \rightarrow S_1S_2$.

Kleene Star

- A grammar for $L(G_1)^*$ is
- G=({S} ∪ V₁, T₁,P,S)
- where P consists of productions in $\rm P_1$ together with S $\to \Lambda \mid \rm SS_1$
- qed

Negative result for Complement, Intersection

- The class of context-free languages is *not* closed under these two operations: Complement, Intersection
- **Proof.** The language
- $L_1 = \{a^i b^i c^j \mid i, j \ge 0\} = \{a^i b^i \mid i \ge 0\} \bullet c^*$
- being the concatenation of two CFL's is CFL itself.
- Similarly, $L_2 = \{ a^j b^i c^i \mid i, j \ge 0 \}$ is a CFL.
- However, $L_1 \cap L_2 = \{a^i b^i c^i \mid i \ge 0\}$ is not a CFL, as we saw last time.
- Since the intersection can be expressed in terms of union and complementation A ∩ B = Comp(Comp(A) ∪ Comp(B)), it follows that the class of CFL's is not closed under complementation.

Mixtures of CFL and RE

- **Theorem**. Intersection of any context-free language with any regular language is context-free.
- *Proof Idea*. Product construction. Take a PDA for the first language and a DFA for the second. Construct a PDA for the intersection by taking for its states the set of all pairs of states of the first two automata. Etc.
- qed
- Note that there is no sensible definition of the product of two PDA's: we cannot combine two stacks into one.

Proving some language is not CF

• Pumping lemma for CF languages

• Let L be a CFL. Then there exists a number n (depending on L) such that every string w in L of length greater than n contains a CFL pump.

Context Free Pump

- A CFL pump consists of two non-overlapping substrings that can be pumped simultaneously while staying in the language.
- Precisely, two substrings u and v constitute a
 CFL pump for a string w of L (|w| > m) when
 - 1. $uv \neq \Lambda$ (which means that at least one of u or v is not empty)
 - 2. And we can write w=xuyvz, so that for every i ≥ 0
 - 3. $xu^iyv^iz \in L$

The Context Free World

