
CFL Big Picture 



Context Free Languages Conclusion 

• We have studied the class of context free languages (CFL) 
• We saw two different ways to express a CFL 

1. Context Free Grammar 
2. Push Down Automata          

 
• We showed that some were equally expressive 

– We need non-deterministic PDA to express Context Free Grammars 
– Recall the construction of the PDA had only one state, and possible 

several transitions on the same Non-terminal. 

• Some were easier to use than others to describe some 
languages 



Acceptance 

• Context free grammars 
The language of the CFG , G, is the set 
L(G) = {w∈T* | S ⇒∗ w}    where 

S is the start symbol of G 
⇒ is the single step relation between derivations 

 
• Push down automata 

– Use of instantaneous descriptions (IDs) and the 
relation |- between IDs 

– Acceptance by final state 
– Acceptance by empty stack 



Algorithms 

• We studied algorithms to transform one 
description into another 
1. Context Free Grammar to PDA (Theorem 2.21 pg 115) 
2. PDA into Context Free Grammar (Lemma 2.27 pg 119) 

• We studied how to transform grammars 
1. To remove ambiguity (layering) 

1. Non-ambiguous languages can have ambiguous grammars 

2. To transform into Chomsky Normal Form 
 



Properties 

• We saw that Regular Languages have many 
properties 
 

• Closure properties 
– Union 
– Kleene – star 
– Intersection 
– Complement 
– Reversal 
– Difference 
– Prefix 



CFL Languages have fewer properties 

• Closure properties 
– Union 
– Kleene – star 
– Concat 

 

• But we do have the intersection between CFL 
and RL produces a CFL 
 



Closure Properties of CFL's 

• The class of context-free languages is closed 
under these three operations: Union, 
Concatenation, Kleene Star 
 

• Assumptions:  
•  Let G1=(V1,T1,P1,S1) and G2=(V2,T2,P2,S2) 
• be two CF grammars. Assume the sets of 

variables, V1 and V2 are disjoint. 
 



Unio
n 

 
• A grammar for the union L(G1) ∪ L(G2) is  

 
• G=({S} ∪ V1 ∪ V2, T1 ∪ T2,P,S) 

 
• where P consists of productions in P1 and P2 

together with S → S1 | S2 
 



Concatenatio
n 

• A grammar for the concatenation  
L(G1)L(G2) is  
 

• G=({S} ∪ V1 ∪ V2, T1 ∪ T2,P,S) 
 

• where P consists of productions in 
• P1 and P2 together with S → S1S2. 



Kleene 
Star 

• A grammar for L(G1)* is  
 

• G=({S} ∪ V1, T1,P,S) 
 

• where  P consists of productions in P1 together 
with S → Λ | SS1   
 

• qed 



Negative result for 
Complement, Intersection 

• The class of context-free languages is not closed under these 
two operations: Complement, Intersection 
 

• Proof. The language  
•      L1= {aibicj | i,j ≥ 0} = { ai bi | i ≥ 0} • c* 
• being the concatenation of two CFL's is CFL itself. 
• Similarly,  L2 = { aj bi ci | i,j ≥ 0 } is a CFL.  
• However, L1 ∩ L2 = {ai bi ci | i ≥ 0} is not a CFL, as we saw last 

time. 
 

• Since the intersection can be expressed in terms of union and 
complementation A ∩ B = Comp(Comp(A) ∪ Comp(B)) , it follows that the 
class of CFL's is not closed under complementation.  



Mixtures of CFL and 
RE 

• Theorem. Intersection of any context-free language with any 
regular language is context-free.  
 

• Proof Idea. Product construction. Take a PDA for the first 
language and a DFA for the second. Construct a PDA for the 
intersection by taking for its states the set of all pairs of states 
of the first two automata. Etc.  

• qed  
 

• Note that there is no sensible definition of the product of two 
PDA's: we cannot combine two stacks into one. 



Proving some language is not CF 

• Pumping lemma for CF languages 
 

• Let L be a CFL. Then there exists a number n 
(depending on L) such that every string w in L 
of length greater than n contains a CFL pump.  
 



Context Free Pump 

• A CFL pump consists of two non-overlapping 
substrings that can be pumped simultaneously 
while staying in the language.  

• Precisely, two substrings u and v constitute a 
CFL pump for a string w of L ( |w| > m) when 
1. uv ≠ Λ  (which means that at least one of u or v is not empty) 

2. And we can write  w=xuyvz,  so that for every i ≥ 0 
3. xuiyviz ∈ L 

 
 



DFA 
NFA 

εNFA 

RegExp 

Lift delta fun 

Subset 
Construction 

Via GenNFA by 
RegExp 
decompostion 

State 
Elimination 

GenNFA 

Delta fun lifting 

ε-removal 

data DFA q s =  
   DFA { states :: [q], 
              symbols :: [s], 
              delta :: q -> s -> q, 
              start :: q, 
             final :: [q]} data NFA q s =  

   NFA { states :: [q], 
              symbols :: [s], 
              delta :: q -> s -> [q], 
              start :: q, 
               final :: [q]} 

data NFAe q s =  
   NFAe { states :: [q], 
                symbols :: [s], 
                delta :: q -> Maybe s -> [q], 
                start :: q, 
                final :: [q]} 

data RegExp a 
   = Lambda           
   | Empty                         
   | One a    
   | Union (RegExp a) (RegExp a)  
   | Cat (RegExp a) (RegExp a)  
   | Star (RegExp a) 

data GNFA q s =  
   GNFA { states :: [q], 
                 symbols :: [s], 
                 delta :: q -> q -> RegExp 
s, 
                 start :: q, 
                 final :: q } 

RegGram 

data RegGram v t =  
  RegGram { nonTerm :: [v] 
          , term :: [t] 
          , prod :: [Prod v t] 
          , start :: v } 

Transition to 
production 

The Regular World 



The Context Free World 

Context Free 
Grammars 

Non-deterministic 
PDA 

Context Free 
Expressions 

Deterministic PDA 

Alg 12.7 
Alg 12.8 

data CfExp a 
  = Lambda    
  | Empty 
  | One a 
  | Union (CfExp a) (CfExp a 
  | Cat (CfExp a) (CfExp a) 
  | Mu Int (CfExp a) 
  | V Int 

data CFGram n t =  
  CFGram { nonTerm :: [n] 
         , terms :: [t] 
         , prod :: [(n,[Sym n t])] 
         , start :: n } 

data PDA q s z =   
   PDA { states :: [q], 
         symbols :: [s], 
         stacksym :: [z], 
         delta ::  [(q,Maybe s,z,[(q,[z])])], 
         start :: q, 
         final :: [q]} 

Mu instantiation 

Mu Abstraction 



The Larger World 

Regular Languages 
anbm 

Context Free Languages 
anbn 

palindromes 

anbncn 
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