CFG and PDA accept the same languages

Sipser pages 117-125

Equivalence of CFGs and PDAs

The equivalence is expressed by two theorems.

Theorem 1. Every context-free language is accepted by some PDA.

Theorem 2. For every PDA M, the language $L(M)$ is context-free.

We will describe the constructions, see some examples and proof ideas.

Every Context Free Language is accepted by a PDA

From a CF Grammar

Build a PDA
ε Lhs/Rhs

Lemma 2.21 (page 115 Sipser)

Given a CFG $G=(V, T, P, S)$, we define a PDA $M=\left(\left\{q_{\text {start }}, q_{\text {loppop }}, q_{\text {accept }}\right\}, T, T \cup \vee \cup\{\$\}, \delta, q_{\text {accept }}\left\{q_{\text {start }}\right\}\right)$, with δ given by

- $\delta\left(q_{\text {start }}, \varepsilon, \varepsilon\right)=\left\{\left(q_{\text {loop }}, S \$\right)\right\}$
- If $A \in V$, then $\delta\left(q_{\text {loop }}, \varepsilon, A\right)=\left\{\left(q_{\text {loop }}, \alpha\right) \mid A \rightarrow \alpha\right.$ is in $\left.P\right\}$
- If $\mathrm{a} \in \mathrm{T}$, then $\delta\left(\mathrm{q}_{\text {loop }}, \mathrm{a}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{\text {loop }}, \varepsilon\right)\right\}$
- $\delta\left(q_{\text {loop }}, \varepsilon, \$\right)=\left\{\left(q_{\text {accept }}, \varepsilon\right)\right\}$

1. Note that the stack symbols of the new PDA contain all the terminal and non-terminals of the CFG plus \$
2. There is only 3 states in the new PDA, all the rest of the info is encoded in the stack.
3. Most transitions are on ε, one for each production
4. A few other transitions come one for each terminal.
5. The start and accept state each add a transition and use the marker \$

The automaton simulates leftmost derivations of G producing w, accepting by empty stack. For every intermediate sentential form uA α in the leftmost derivation of w (note first that $w=u v$ for some v), M will have $\mathrm{A} \alpha$ on its stack after reading u. At the end (case $u=w$ and $v=\varepsilon$) the stack will be empty.

Example

For our old grammar: $\mathrm{S} \rightarrow \mathrm{SS|(S)|} \mathrm{\varepsilon}$
The automaton M will have seven transitions, most from $\mathrm{q}_{\text {loop }}$ to $\mathrm{q}_{\text {loop }}$:

1. $\delta\left(q_{\text {start }}, \varepsilon, \varepsilon\right)=\left(q_{\text {loop }}, S \$\right)$
2. $\delta\left(\mathrm{q}_{\text {loop }}, \varepsilon, \mathrm{S}\right)=\left(\mathrm{q}_{\text {loop }}, \mathrm{SS}\right)$
3. $\delta\left(\mathrm{q}_{\text {loop }}, \varepsilon, \mathrm{S}\right)=\left(\mathrm{q}_{\text {loop }},(\mathrm{S})\right)$
4. $\delta\left(\mathrm{q}_{\text {loop }}, \varepsilon, \mathrm{S}\right)=\left(\mathrm{q}_{\text {loop }}, \varepsilon\right)$
$\mathrm{S} \rightarrow \mathrm{SS}$
$S \rightarrow(S)$
5. $\delta\left(\mathrm{q}_{\text {loop }},\left(,()=\left(\mathrm{q}_{\text {loop }}, \varepsilon\right)\right.\right.$
6. $\left.\left.\delta\left(\mathrm{q}_{\text {loop }},\right),\right)\right)=\left(\mathrm{q}_{\text {loop }}, \varepsilon\right)$
7. $\delta\left(q_{\text {loop }}, \varepsilon, \$\right)=\left(q_{\text {accept }}, \varepsilon\right)$
8. Most transitions are on ε, one for each production
9. A few other transitions come one for each terminal
10. Or from the start and accept conditions

Compare

Now compare the leftmost derivation
$\mathrm{S} \Rightarrow \mathrm{SS} \Rightarrow(\mathrm{S}) \mathrm{S} \Rightarrow((\mathrm{S})) \mathrm{S} \Rightarrow(()) \mathrm{S} \Rightarrow(())(\mathrm{S}) \Rightarrow(())()$
with the looping part of M's execution on the same string given as input:

(q,		[1]
(q, "(())()"	,ss	
(q, "(())()"	,(s)s	
(q, "())()"	(s)s	
($q, ~ ")(\text {) })^{\prime}$,s) s	
(q, "))()"	,)/s	
q, ")()"	,)s	
(q, "()"	,s	- [2]
	, (s)	
	,s)	
	,)	

2.	$\delta(\mathrm{q}, \varepsilon, \mathrm{S})=(\mathrm{q}, \mathrm{SS})$	$\mathrm{S} \rightarrow \mathrm{SS}$
3.	$\delta(\mathrm{q}, \varepsilon, \mathrm{S})=(\mathrm{q},(\mathrm{S}))$	$\mathrm{S} \rightarrow(\mathrm{S})$
4.	$\delta(\mathrm{q}, \varepsilon, \mathrm{S})=(\mathrm{q}, \varepsilon)$	$\mathrm{S} \rightarrow \varepsilon$
5.	$\delta(\mathrm{q},(,()=(\mathrm{q}, \varepsilon)$	
6.	$\delta(\mathrm{q}),),)=(\mathrm{q}, \varepsilon)$	

Note we write q for $\mathrm{q}_{\text {loop }}$ for brevity

Transitions simulate left-most derivation

$$
\mathrm{S} \Rightarrow \mathrm{SS} \Rightarrow(\mathrm{~S}) \mathrm{S} \Rightarrow((\mathrm{~S})) \mathrm{S} \Rightarrow(()) \mathrm{S} \Rightarrow(())(\mathrm{S}) \Rightarrow(())()
$$

Note we write q for $\mathrm{q}_{\mathrm{loop}}$ for brevity

Proof Outline

To prove that every string of $\mathrm{L}(\mathrm{G})$ is accepted by the PDA M, prove the following more general fact:

If $S \Rightarrow_{\text {left-most }} * \alpha$ then $\left(q_{\text {loop }}, u v, S\right) \mid-*\left(q_{\text {loop }}, v, \beta\right)$
where $\alpha=u \beta$ is the "leftmost factorization" of α (u is the longest prefix of α that belongs to T^{*}, i.e. all terminals).
For example: if $\alpha=\operatorname{abcWdXa}$ then $u=a b c$, and $\beta=\mathrm{WdXa}$, since the next symbol after abc is $\mathrm{W} \in \mathrm{V}$ (a non-terminal or ε)
$S \Rightarrow{ }_{\mathrm{lm}}{ }^{*}$ abcW... then $\left.\left(q_{\text {loop }}, \operatorname{abcV}, \mathrm{S}\right)\right|_{-*}\left(\mathrm{q}_{\text {loop }}, \mathrm{V}, \mathrm{W} . ..\right)$
The proof is by induction on the length of the derivation of α.

We also need to prove that every string accepted by M belongs to $L(G)$. Again, to make induction work, we need to prove a slightly more general fact:

If $\left(q_{\text {loop }}, w, A\right) \mid-{ }^{*}\left(q_{\text {loop }}, \varepsilon, \varepsilon\right)$, then $A \Rightarrow{ }^{*} W$
For all Stacks A, letting $\mathrm{A}=$ Start we have our proof.

This time we induct on the length of execution of M that leads from the ID ($\mathrm{q}_{\text {loop }}, \mathrm{w}, \mathrm{A}$) to ($\mathrm{q}_{\text {loop }}, \varepsilon, \$$).

Grammar from a PDA

Assume the $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ is given, and that it accepts by empty stack.

Alter it so that it has the following additional properties

1. It has a single accept state
2. Each transition either
3. Pushes a symbol onto the stack
4. Or pops a symbol off the stack
5. But not both

Why can we do this? (hint add new states)

Symbols of the CFG

For every pair of states $p, q \in Q$

Make a variable (non-terminal) $A_{p q}$
A symbol $A_{p q}$ should derive a string if that string cause the PDA to move from state p (with an empty stack) to state q (with an empty stack).

Such strings can do the same, starting and ending with the same arbitrary stack. Why?

Productions of the CFG

Consider a string x that moves the PDA from p to q on empty stack.

1. The first move must be a push (why?)
2. The last move must be a pop (why?)
(p, x, ε) |- (_,_,Z) |- ...|-(_,_,T) -| ($q, \varepsilon, \varepsilon$)
There are 2 cases $(Z=T)=$ True or $(Z=T)=$ False
3. $(Z=T)=$ True

Stack is only empty at the beginning and at the end.

$$
\begin{gathered}
(p, a y, \varepsilon)|-(r, y, z)|-\ldots|-(s, b, T)-|(q, \varepsilon, \varepsilon) \\
A_{p q} \rightarrow a A_{r s} b
\end{gathered}
$$

2. $(Z=T)=$ False
the stack is empty in the middle, at some state r

$$
\begin{aligned}
& (\mathrm{p}, \mathrm{x}, \varepsilon)\left|-\ldots\left(r_{1}, \varepsilon\right)\right|-\ldots-\mid(\mathrm{q}, \varepsilon, \varepsilon) \\
& \mathrm{A}_{\mathrm{pq}} \rightarrow \mathrm{~A}_{\mathrm{pr}} \mathrm{~A}_{\mathrm{rq}}
\end{aligned}
$$

Given $\mathbf{M}=(\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{s},\{\mathbf{f}\})$

Construct $\mathrm{G}=(\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{S})$
$V=\left\{A_{p q} \mid p, q \in Q\right\}$
$\mathrm{S}=\mathrm{A}_{\mathrm{sf}}$
$\Sigma=\Sigma$
$\mathrm{R}=$ cases

1. For each $\mathrm{p} \in \mathrm{Q}$
2. For each $p, q, r \in Q$
$\mathrm{A}_{\mathrm{pp}} \rightarrow \varepsilon$
3. For each $p, q, r, s \in Q$
$T \in \Gamma \quad \mathrm{a}, \mathrm{b} \in \Sigma_{\varepsilon}$
$(r, T) \in \delta(p, a, \varepsilon) \quad(q, \varepsilon) \in \delta(s, b, T)$
$A_{p q} \rightarrow a A_{r s} b$

$$
(p, a y, \varepsilon)|-(r, y, Z)|-\ldots|-(s, b, T)-|(q, \varepsilon, \varepsilon)
$$

Claim 2.30

If $A_{p q}$ generates x, then x can bring the PDA from p with empty stack to q with empty stack
$A_{p q} \Rightarrow^{*} x \quad$ implies $\quad(p, x, \varepsilon) \mid-*(q, \varepsilon, \varepsilon)$
Proof by induction on the number of steps in the derivation $\mathrm{A}_{\mathrm{pq}} \Rightarrow{ }^{*} \mathrm{X}$

Claim 2.31

If x can bring the PDA from p with empty stack to q with empty stack then A_{pq} generates x
$\left.(p, x, \varepsilon)\right|^{*}(q, \varepsilon, \varepsilon) \quad$ implies $\quad A_{p q} \Rightarrow{ }^{*} x$
Proof by induction on the length of

$$
(p, x, \varepsilon) \mid-*(q, \varepsilon, \varepsilon)
$$

The following is additional material for the curious.

It gives a second construction not described in Sipser.

It is not required.

An another algorithm for CFG from a PDA

Assume the $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ is given, and that it accepts by empty stack. Consider execution of M on an accepted input string.

If at some point of the execution of M the stack is $Z \zeta$ (Z is on top, ζ is the rest of stack)
In terms of instantaneous descriptions (state ${ }_{i}$, input, Z ζ) $\mid-\ldots$

Then we know that eventually the stack will be ζ. Why? Because we assume the input is accepted, and M accepts by empty stack, so eventually Z must be removed from the stack
(state ${ }_{\mathrm{i}}, \alpha \mathrm{X}, \mathrm{Z} \zeta$) $\mid-_{-*}$ (state $_{\mathrm{j}}, \mathrm{X}, \zeta$)
The sequence of moves between these two instants is the "net popping" of Z from the stack.

During this sequence of moves, the stack may grow and shrink several times, some input will be consumed (the α), and M will pass through a sequence of states, from state $_{i}$ to state ${ }_{j}$.

Net Popping

Net popping is fundamental for the construction of a CFG G equivalent to M .

We will have a variable (Non-terminal) [qZp] in the CFG G for every triple in $(q, Z, p) \in \mathrm{Q} \times \Gamma \times \mathrm{Q}$ from the PDA. Recall

1. Q is the set of states
2. Γ Is the set of stack symbols

We want the rhs of a production whose lhs is [qZp] to generate precisely those strings $\mathrm{w} \in \Sigma^{*}$ such that M can move from q to p while reading the input w and doing the net popping of Z. A production like [qZp] -> ?

This can be also expressed as (q, w, Z) |-* (p, Λ, Λ)

Productions of G correspond to transitions of M.

If $(p, \zeta) \in \delta(q, a, Z)$, then there is one or more corresponding productions, depending on complexity of ζ.

1. If $\zeta=\Lambda$, we have [qZp] $\rightarrow a$
2. If $\zeta=Y$, we have [qZr] $\rightarrow a[p Y r]$ for every state r
3. If $\zeta=Y Y^{\prime}$ we have $[q Z s] \rightarrow a[p Y r][r Y ' s]$, for every pair of states r and s.
4. You can guess the rule for longer ζ.

Example

$$
\begin{aligned}
& \mathrm{Q}=\{0,1\} \\
& \mathrm{S}=\{\mathrm{a}, \mathrm{~b}\} \\
& \Gamma=\{\mathrm{X}\} \\
& \delta(0, \mathrm{a}, \mathrm{X})=\{(0, \mathrm{X})\} \\
& \delta(0, \Lambda, X)=\{(1, \Lambda)\} \\
& \delta(1, \mathrm{~b}, \mathrm{X})=\{(1, \Lambda)\} \\
& \mathrm{Q}_{0}=0 \\
& \mathrm{Z}_{0}=X \\
& \mathrm{~F}=\{ \}, \text { accepts by empty stack }
\end{aligned}
$$

Productions, At least one from each element in delta $(p, z) \in \delta(q, a, Z)$
($0, a, X, 0, X$)
(1,b,X,1, $)$
$(0, \Lambda, X, 1, \Lambda)]$

OXO -> a OXO
0X1 -> a OX1
1X1 -> b
OXI -> Λ

