
Decideability

Sipser pages 193 - 214

Decideability

• A class of problems is decidable if every problem
can be answered Yes or No.

• We often look at classes that ask questions about
languages and automata.

• We generally use the notation <P> to describe an
encoding of a problem P in some way as input to
a Turing machine.

• Turing machines are a good mechanism to talk
about decideability.
– Why?
– What characteristics to Turing machines have?

Problems about DFA’s

• ADFA Does a DFA (B) accept some string (w)?

• EDFA Is the language accepted by some DFA
(B) the empty language (the empty set of
strings).

• EQDFA Do two DFAs (A and B) accept the
same language.

ADFA

• Does a DFA (B) accept some string (w)?

• ADFA = { <B,w> | B is a DFA that accepts input string w }

• Note that ADFA is a language problem itself.
• Consider <B,w> to be the input language
• And the solution a Turing Machine that halts on all such input

in either the accept or reject state

Representations

• Recall <B,w> is meant to represent a DFA and
some input string.

• How might we represent this as input to a
TM?

• B =(Q,Σ, δ,q0,F)
•

… Q … … # Σ … # … δ … # q0 … ... # … F ... #

Checking ADFA

• Let M be a TM that does the following
• Does the input represent a legal DFA

– If not then reject
• Simulate B on input
• When finishing processing w, if the simulation is

in an accepting state, then the TM accepts, else
the TM rejects.

… Q … … # Σ … # … δ … # q0 … ... # … F ... #

ANFA

• How might we show that an NFA (C) accepts a
string w?

• We might use a similar approach, encoding
the NFA and its input on a TM tape <C,w> and
then simulating the NFA.

• There is another approach!
• Since every NFA has an equivalent DFA (the

subset construction) lets use the TM (M) of
the last section.

N an TM that decides ANFA

• N is a TM on input <C,w> where C is an NFA and
w is a string
1. Convert C into a DFA (D) using subset construction
2. Run M on <D,w>
3. If M accepts, then N accects, if M rejects, then N

rejects

This is an example of an important strategy called

reduction

How might we decide ARegExp

EDFA is decidable

• T = On input <A> where A is a DFA
– Mark the start state of A
– Repeat until no new state is marked

• Mark any state that has a transition coming into it from
any state that is already marked

– If no final state of A is marked, accept; other wise
reject

EQDFA is decidable

• To test if two DFAs decide the same language
we will rely on several facts
– DFA’s are closed under intersection, union, and

complement
– EDFA is decidable (TM T from previous section)

Symmetric Difference

• L(C) = (L(A) ∩ L(B)) U (L(A) ∩ L(B))

A
B

A
B

L(A) ∩ L(B)

A
B

L(A) ∩ L(B)

If A and B are equal,
then the symmetric
difference is empty

EQDFA is decidable

• F = On input <A,B> where A and B are DFAs
1. Construct DFA C, the symmetric difference of A

and B
2. Run TM T (the one that decides EDFA) on <C>
3. If T accepts, then F accepts, if T rejects, then F

rejects

Problems about CFG’s

• The following class of problems are discussed
in the text. Be sure and read about them.
– ACFG Does a CFG (B) accept some string (w)?
– ECFG Is the language accepted by some CFG (B)

the empty language (the empty set of strings).
• This one is quite interesting, and not what one might expect. Pay

close attention!

– EQCFG Do two CFGs (A and B) accept the same
language.

The size of infinite sets

• How can we tell if two sets have the same
size?

• Easy for finite sets.
• Not so straightforward for infinite sets

Two infinite sets have the same size if every

element of one can be paired with the
elements of the other

Properties of functions

• One-to-one
– A function, f, is one-to-one if it

never maps two different elements
of the domain to the same element
of the range. x ≠ y => f(x) ≠ f(y)

• Onto
– A function f is onto, if every

element of the range is mapped to
by some element of the domain

• Correspondence
– A function is a correspondence if it

is both one-to-one and onto

x

y
z

In one-to-one functions this
never happens

q

w
z a

c
b d

Naturals and the even-Naturals have the same size

 n f(n)

1 2

2 4

3 6
.
.
.

.

.

.

f(n) = n * 2

F is one-to-one, two numbers never
map to the same element

F is onto, every even number is
mapped to

Countable sets

• Definition
– A set is countable, if it is finite, or if it is infinite, it

is in correspondence to the Natural numbers

Rational numbers are countable

• Rational numbers, numbers exactly expressed
as x/y, are countable.

1/1 1/2 1/3 1/4 1/5 1/6

2/1 2/2 2/3 2/4 2/5

3/1 3/2 3/3 3/4

4/1 4/2 4/3

5/1 5/2

6/1

How can we establish
a correspondance?

Can’t travel along
one row.

Or along one column

But along the
diagonals

The real numbers are not countable

• We show no correspondence between R and N can
exist.

• We use a classic argument (due to Cantor) called a
diagonalization argument.

• First recall that every Real number can be expressed as
an infinite decimal expansion. Example
– 3.1415962…
– 2.0000000…
– 0.1250000…
– 5.5555555…

Proof by contradiction.
• Assume that the Naturals and the Reals are in

correspondence, then there exists a one-to-
one, onto function, f : Nat -> Real

 n f(n)

1 3.14159…

2 55.5555…

3 0.12500…

4 0.50000…

A part of the coorespondence, f, between
the naturals and the Reals

We show that f can’t be onto, thus it can’t
be a correspondence, and hence the Reals
can’t be countable

Consider the real between 0 and 1
• All its digits are after the decimal point

• The nth digit after the decimal point is

chosen different from the nth digit of the
nth number, for example .2669…

• 2≠1
• 6≠5
• 6≠5
• 9≠0

• Note that no natural maps to this number.

Suppose one did, let it be Z, but the Zth
digit of f(Z) differs from our number in the
Zth digit by construction.

• This is a contradiction, so our assumption
that the Reals are countable must be false.

 n f(n)

1 3.14159…

2 55.5555…

3 0.12500…

4 0.50000…

The set of all Turing Machines is countable

• Recall if Σ is finite, then Σ* is countable
• We can write them all down

– First all of length 0
– Then all of length 1
– Then all of length 2
– Then all of length 3

• Each Turing Machine (M) has an encoding as
<M> which is a string in Σ*

The set of all infinite binary strings is
not countable.

• Diagonialization argument
• Consider 0101…
• Differs from the nth digit in

the nth string

 n f(n)

1 1011001…

2 0010100…

3 1010111…

4 0110110…

Characteristic functions of languages

• Consider the following function: F
• Given a finite alphabet Σ
• Given a language L over Σ

– L ⊆ Σ*
– Σ* is countable (thus so is L)

• F(i) = 1 if the ith string of Σ* is in L, and 0
otherwise.

• We call F the characteristic function of L

The set of languages is not countable
• Given a finite alphabet Σ
• Consider the set of all languages, L, over Σ*
• Each language L in L has a characteristic function,

F, which is an infinite sequence of 0’s and 1’s (I.e.
an infinite binary sequence)
– Eg consider L = { x | length of x is even }
– F(ε)=1; F(0)=0; F(1)=0; F(11)=1; F(00)=1; F(01)=1; F(10)=1; …

• Thus, there is a correspondance between
languages and infinite binary sequences.

• We know that the set of infinite binary sequences
is not countable, so the set of languages over a
finite alphabet Σ*, can’t be countable either!

There are languages not accepted by a
Turing Machine. Sipser pg 178

• There are countable number of TMs

• A Turing Machine describes a language.

• There are uncountable number of languages.

• Thus some languages must not be describable
by a TM.

The Halting problem
• Until now every problem we have looked at closely has

been decidable.

• One might ask: “is any problem undecidable?”

• There is at least 1 undecidable problem ATM
– Acceptance by Turing Machine
– Does an arbitrary TM accept an arbitrary input is

undecidable

• This is an important result, both philosphically and
computationally!

ATM is Turing Recognizable!

• While not decidable, ATM is Turing
Recognizable.

• This depends upon the fact that there is a
universal TM

• The universal Turing Machine takes
<tm,input> and simulates “tm” on “input”.

• Note if “tm” does not halt on “input” neither
does the universal TM halt on <tm,input>

RTM, Recognizing a TM

• U = On input <M,w>, whem M is a TM and w
is a string
– Simulate M on input w
– If M ever enters its accept state, accept; if M ever

enters its reject state, reject

• Note, if we had a way of determining that M
would not halt on w, we could reject, but we
don’t.

ATM is undecidable
Sipser pg 179

• Proof by contradiction
• Assume that ATM is decidable. By a TM called H

– H(<M,w>) = accept if M accepts w, and reject if M
does not accept w (I.e. M either rejects or loops)

• Then if M decides, we can make another

machine D
• D(<M>) = accept if H(<M>,<M>) rejects, and
 rejects if H(<M>,<M>) accepts

M(<M>) accept reject loop

H(<M>,<M>) accept reject reject

D(<M>) reject accept accept

D(<D>) accept reject loop
H(<D>,<D>) accept reject reject
D(<D>) reject accept accept

M(w) accept reject loop

H(<M,w>) accept reject reject

How a Turing machine M and H(<M>,w) are related.

How a Turing machine M and H(<M>,<M>) and D(<M>) are related.

The curious case when D is applied to itself.

Conclusion: ATM is undecidable

• Since D(<D>) rejects if D(<D>) accepts we have
reached a contradiction.

• So our original assumption that ATM is
decidable must be incorrect.

• Thus, ATM is must be undecidable

D(<D>) accept reject loop
H(<D>,<D>) accept reject reject
D(<D>) reject accept accept

Visualizing Diagonalization of ATM

H(I,j) <M1> <M2> <M3> <M4> <M5>

M1 Accept Reject Reject Accept Reject

M2 Reject Accept Accept Reject Accept

M3 Reject Reject Reject Reject Reject

M4 Accept Accept Reject Accept Accept

M5 Reject Accept Reject Accept Reject

A table of the results of applying H(<Mi><Mj>)

D is a TM so where is it in the Table?

H(<M>,<M>) accept reject reject

D(<M>) reject accept accept

H(I,j) <M1> … <D> … <M5>

M1 Accept Reject Reject Accept Reject

… Reject Accept Accept Reject Accept

D Reject Reject ? Reject Reject

… Accept Accept Reject Accept Accept

M5 Reject Accept Reject Accept Reject

Definition

• A language is Turing co-recognizable if its
complement is Turing recognizable.

• Recall the complement of a language is the
language with all the strings not recognized by
the original language.

M(w) accept reject loop
CompM(w) reject accept accept

Lemma

• A language, L, is decidable if and only if it is
both Turing recognizable and Co-Turing
recognizable.

• Two things to prove
1. If L is decidable then it is both Turing and Co-

Turing recognizable. This way is easy
2. If L is Turing and Co-Turing recognizable, it is

decidable

If M is Turing and Co-Turing recognizable, it is decidable

• P(w) = run M1(w) and M2(w) in parallel
• If M1 accepts, then P accepts.
• If M2 accepts then P rejects.

Turing
recognizer

accept reject loop

M1(w) accept reject loop

Turing Co-
recognizer

accept reject loop

M2(w) accept reject loop

P is a decider

• Every string, w, is either in L (M1 halts and accepts)
or it is not (M2 halts and rejects)

• So one of M1(w) or M2(w) must halt.
• P halts when either M1 or M2 halts, so P must Halt.
• So P is a decider that accepts all strings in L and

rejects all strings not in L

• P(w) = run M1(w) and M2(w) in parallel
• If M1 accepts, then P accepts.
• If M2 accepts then P rejects.

Some languages aren’t even recognizable!
Sipser pg 81

• Consider the language which is the
complement of ATM which we write ATM

• We prove that ATM is not Turing recognizable

using a proof by contradiction

• .

Proof

• Assume that ATM is Turing recognizable
• We know ATM is Turing recognizable

– Sipser pg 174, theorem 4.11, Slide 29 in these notes

• Thus by our lemma ATM is decidable
• We know that ATM is not decidable, which

leads to a contradiction
• So our original assumption that ATM is Turing

recognizable must be flawed.

Review: Positive results
• Countable and uncountable Sets.
• Acceptance of Regular and Context Free

languages is decidable.
• Equality of Regular and Context Free

languages is decidable.
• Emptiness of Regular and Context Free

languages is decidable.

Review: Negative results
• There are uncountable Sets

– The reals, infinite binary sequences, languages over a
finite alphabet.

• There are languages not described by any Turing
Machine.

• There is an un-decidable language
– ATM is undecidable
– But, ATM is Turing recognizable

• There is a language that is not even Turing

recognizable! (ATM the complement of ATM)

regular

ATM

ATM

ADFA

	Decideability
	Decideability
	Problems about DFA’s
	ADFA �
	Representations
	Checking ADFA
	ANFA
	N an TM that decides ANFA
	How might we decide ARegExp
	EDFA is decidable
	EQDFA is decidable
	Symmetric Difference
	EQDFA is decidable
	Problems about CFG’s
	The size of infinite sets
	Properties of functions
	Naturals and the even-Naturals have the same size
	Countable sets
	Rational numbers are countable
	The real numbers are not countable
	Proof by contradiction.
	Consider the real between 0 and 1
	The set of all Turing Machines is countable
	The set of all infinite binary strings is not countable.
	Characteristic functions of languages
	The set of languages is not countable
	There are languages not accepted by a Turing Machine. Sipser pg 178
	The Halting problem
	ATM is Turing Recognizable!
	RTM, Recognizing a TM
	ATM is undecidable�Sipser pg 179
	Slide Number 32
	Conclusion: ATM is undecidable
	Visualizing Diagonalization of ATM
	D is a TM so where is it in the Table?
	Definition
	Lemma
	If M is Turing and Co-Turing recognizable, it is decidable�
	P is a decider
	Some languages aren’t even recognizable! �Sipser pg 81
	Proof
	Review: Positive results
	Review: Negative results
	Slide Number 44

