Deterministic Finite State Automata

Sipser pages 31-46

Formal Definition

- A DFA is a quintuple $A=\left(\mathbf{Q}, \Sigma, \boldsymbol{\delta}, \mathbf{q}_{0}, \mathbf{F}\right)$ where
- Q is a set of states
$-\Sigma$ is the alphabet (of input symbols)
$-\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ is the transition function
$-\mathbf{q}_{0} \in \mathbf{Q}--$ the start state
$-\mathbf{F} \subseteq \mathbf{Q}$-- final states
- Page 35 of Sipser

Example

- In our example,
- $\mathbf{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$,
$\Sigma=\{0,1\}$,
$q_{0}=q_{0}$,
$F=\left\{q_{2}\right\}$,

δ is given by 6 equalities
- $\delta\left(q_{0}, 0\right)=q_{1}$,
- $\delta\left(q_{0}, 1\right)=q_{0}$,
- $\delta\left(q_{2}, 1\right)=q_{2}$

Transition Table

- All the information presenting a DFA can be given by a single thing -- its transition table:

- The initial and final states are denoted by \rightarrow and * respectively.

Language of accepted Strings

- A DFA $=\left(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{q}_{0}, \mathbf{F}\right)$, accepts a string

$$
w=" w_{1} w_{2} \ldots w_{n} " \text { iff }
$$

- There exists a sequence of states $\left[r_{0}, r_{1}, \ldots r_{n}\right]$ with 3 conditions

1. $r_{0}=q_{0}$
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$
3. $r_{n+1} \in F$

Page 40 in Sisper

Acceptance is about finding a sequence.

How do we find such
a sequence?

Example

- Show that "ABAB" is accepted.
- Here is a path $[0,0,1,2,2]$
- The first node, 0 , is the start state.
- The last node, 2 , is in the accepting states
- The path is consistent with the transition
- $\delta 0 \mathrm{~A}=0$
- $\delta 0 B=1$
- $\delta 1 \mathrm{~A}=2$
- $\delta 2 \mathrm{~B}=2$

Definition of Regular Languages

- A language is called regular if some finite automaton accepts (i.e. a DFA accepts it)
- Page 40 in Sipser

Extension of δ to Strings

- Given a state \mathbf{q} and a string \mathbf{w}, there is a unique path labeled \mathbf{w} that starts at \mathbf{q} (why?). The endpoint of that path is denoted $\underline{\delta}(q, w)$
- Formally, the function $\underline{\delta}: \mathrm{Q} \times \Sigma^{*} \rightarrow \mathrm{Q}$
- is defined recursively:

$$
\begin{aligned}
& -\underline{\delta}(q, \varepsilon)=q \\
& -\underline{\delta}(q, x: \times s)=\underline{\delta}(\delta(q, x), X s)
\end{aligned}
$$

- Note that $\underline{\delta}\left(q,{ }^{\prime \prime} a^{\prime \prime}\right)=\delta(q, a)$ for every $a \in \Sigma$;
- so $\underline{\delta}$ does extend δ.

Example trace

- Diagrams (when available) make it very easy to compute $\underline{\delta}(q, w)$--- just trace the path labeled w starting at q.
- E.g. trace 101 on the diagram below starting at

Implementation and precise arguments need

 the formal definition.$$
\underline{\delta}(q, \varepsilon)=q
$$

$$
\begin{aligned}
& \underline{\delta}\left(q_{1}, 101\right)=\underline{\delta}\left(\delta\left(q_{1}, 1\right), 01\right) \\
& =\underline{\delta}\left(q_{1}, 01\right) \\
& =\underline{\delta}\left(\delta\left(q_{1}, 0\right), 1\right) \\
& =\underline{\delta}\left(q_{2}, 1\right) \\
& =\underline{\delta}\left(\delta\left(q_{2}, 0\right), \varepsilon\right) \\
& =\underline{\delta}\left(q_{2}, \varepsilon\right) \\
& =q_{2} \\
& \underline{\delta}(q, x: x s)=\underline{\delta}(\delta(q, x), x s)
\end{aligned}
$$

Language of accepted strings - take 2

A DFA $=\left(\mathbf{Q}, \Sigma, \delta, \mathbf{q}_{0}, \mathbf{F}\right)$ accepts a string \mathbf{w} iff $\underline{\delta}\left(\mathbf{q}_{0}, \mathbf{w}\right) \in \mathbf{F}$
The language of the automaton A is

$$
L(A)=\{w \mid A \text { accepts } w\} .
$$

More formally
$L(A)=\{w \mid \underline{\delta}(\operatorname{Start}(A), w) \in \operatorname{Final}(A)\}$

Example:

Find a DFA whose language is the set of all strings over $\{a, b, c\}$ that contain aaa as a substring.

DFA's as data structures

data DFA q s =

$$
\begin{array}{ll}
\text { DFA }[q] & -- \text { states } \\
{[s]} & -- \text { symbols } \\
(q->s->q) & -- \text { delta } \\
q & -- \text { start state } \\
{[q]} & -- \text { accept states }
\end{array}
$$

Note that the States and Symbols can be any type.

Programming for acceptance 1

```
path:: Eq q => DFA q s -> q -> [s] -> [q]
path d q [] = [q]
path d q (s:ss) = q : path d (trans d q s) ss
acceptDFA1 :: Eq a => DFA a t -> [t] -> Bool
acceptDFA1 dfa w = cond1 p && cond2 p && cond3 w p
    where p = path dfa (start dfa) w
cond1 (r:rs)=(start dfa) == r
cond2 [r] = elem r (accept dfa)
cond2 (r:rs) = cond2 rs
cond2 _ = False
cond3 [] [r] = True
cond3 (w:ws) (r1:(more@(r2:rs))) =
    (trans dfa r1 w == r2) && (cond3 ws more)
cond3 _ _ = False
```


Programming for acceptance 2

-- $\underline{\delta}=$ deltaBar
deltaBar :: Eq q => DFA q s -> q -> [s] -> q deltaBar dfa q [] = q
deltaBar dfa q (s:ss) = deltaBar dfa (trans dfa q s) ss
acceptDFA2 dfa w =
elem (deltaBar dfa (start dfa) w)
(accept dfa)

An Example

d1 : : DFA Integer Integer d1 = DFA states symbol trans start final where states $=[0,1,2]$
symbol $=[0,1]$
trans $p a=(2 * p+a)$ `mod` 3
start $=0$
final = [2]

```
d1 = DFA states symbol trans start final
    where states = [0,1,2]
    symbol = [0,1]
    trans p a = (2*p+a) `mod` 3
    start = 0
    final = [2]
```

DFA
Q
$\{0,1,2\}$
Sigma $\{0,1\}$
Delta 0 -> 0
01 -> 1
$10->2$
11 -> 0
$20->1$
21 -> 2
q0
Final \{2\}

Missing alphabet

- I sometimes draw a state transition diagram where some nodes do not have an edge labeled with every letter of the alphabet, by convention we add a new (dead) state where all missing edges terminate.

Review

- DFAs are a computation mechanism
- They compute whether some string is in some language
- Several mechanisms can be defined that describe how they compute. All essentially trace a path through the state diagram.
- DFAs can be represented as a data structure
- Precise algorithms can be defined that implement the computation mechanisms.

Exercises

- Define a DFA for the following languages
- $\{w \mid w$ has at least 3 a's and at least 2 b's $\}$
- $\Sigma=\{a, b\}$
- $\{w \mid$ length $w=3\}$
- $\Sigma=\{m, n, p\}$
- $\{\mathrm{w} \mid \mathrm{w}$ represents an integer $\}$
- $\Sigma=\{a, b, c, 0,2,1\}$

