Lecture 2 Computation and Languages

CS311 Fall 2012

Computation

- Computation uses a well defined series of actions to compute a new result from some input.
- We perform computation all the time

	1	0 1	0 1
348	348	348	348
+ 213	+ 213	+ 213	+ 213
	1	61	561

Properties

- As computer scientists we know Computation
 - Can be carried out by machines
 - Can be broken into sub-pieces
 - Can be paused
 - Can be resumed
 - Can be expressed using many equivalent systems
- The study of computation includes computability
 - what can be computed by different kinds of systems

Binary adders

Ripple Carry Adder

Languages and Computation

- There are many ways to compute the sum of two binary numbers.
- One historically interesting way is to use the notion of a language as a view of computation.

Language = A set of strings

- A *language* over an alphabet Σ is any subset of Σ*. That is, any set of strings over Σ.
- A language can be finite or infinite.
- Some languages over {0,1}:
 - {ε,01,0011,000111, ... }
 - The set of all binary representations of prime numbers: {10,11,101,111,1011, ... }
- Some languages over ASCII:
 - The set of all English words
 - The set of all C programs

Language Representation

- Languages can be described in many ways
 - For a finite language we can write down all elements in the set of strings {"1", "5", "8"}
 - We can describe a property that is true of all the elements in the set of strings { x | |x|=1 }
 - Design a machine that answers yes or no for every possible string.
 - We can write a generator that enumerates all the strings (it might run forever)

A language for even numbers written in base 3

• ()

• 1

• 2

• 3

• 4

• 5

6

• 7

8

Base 3

- 1
 - 2

• ()

- 10
- 11
- 12
- 20
- 21
- 22

The language

 $\{0, 2, 11, 20, 22, ...\}$

There is an infinite number of them, we can write them all down. We'll need to use another mechanism

A machine that answers yes or no for every even number written in base 3.

{0, 2, 11, 20, 22, ...}

DFA Formal Definition

• A DFA is a quintuple $\mathbf{A}=(\mathbf{Q}, \Sigma, \mathbf{s}, \mathbf{F}, \delta)$, where

- \mathbf{Q} is a set of states - Σ is the alphabet of input symbols (A in Hein) - \mathbf{s} is an element of \mathbf{Q} --- the initial state - \mathbf{F} is a subset of \mathbf{Q} ---the set of final states - $\delta: \mathbf{Q} \times \Sigma \longrightarrow \mathbf{Q}$ is the transition function

Example

- Q = {Yes,No}
- $\Sigma = \{0, 1, 2\}$
- S = Yes (the initial state)
- F = {Yes} (final states are labeled in blue)

•
$$\delta: \mathbf{Q} \times \Sigma \longrightarrow \mathbf{Q}$$

delta Yes 0 = Yes
delta Yes 2 = Yes
delta Yes 1 = No
delta No 0 = No
delta No 1 = Yes
delta No 2 = No

Properties

• DFAs are easy to present pictorially:

They are directed graphs whose nodes are *states* and whose arcs are labeled by one or more symbols from some alphabet Σ . Here Σ is {0,1}. • One state is *initial* (denoted by a short incoming arrow), and several are *final/accepting* (denoted by a double circle in the text, but by being labeled blue in some of my notes). For every symbol $a \in \Sigma$ there is an arc labeled *a* emanating from every state.

Automata are string processing devices. The arc from q₁ to q₂ labeled 0 shows that when the automaton is in the state q₁ and receives the input symbol 0, its next state will be q₂.

• Every path in the graph spells out a string over S. Moreover, for every string $w \in \Sigma^*$ there is a unique path in the graph labelled w. (Every string can be processed.) The set of all strings whose corresponding paths end in a final state is the *language of the automaton*.

 In this example, the language of the automaton consists of strings over {0,1} containing at least two occurrences of 0. In the base 3 example, the language is the even base three numbers

What can DFA's compute

- DFAs can express a wide variety of computations
 - 1. Parity properties (even, odd, mod n) for languages expressed in base m
 - 2. Addition (we'll see this in a few slides)
 - 3. Many pattern matching problems (grep)
- But, not everything.
 - E.g. Can't compute { x | x is a palindrome }

Are they good for things other than computation?

- We can use DFAs to compute if a string is a member of some languages.
- But a DFA is mathematical structure (A = (Q, Σ, s, F, δ))
- It is itself an object of study
- We can analyze it and determine some of its properties

Prove

- Q = {Yes,No}
- $\Sigma = \{0, 1, 2\}$
- S = Yes (the initial state)
- F = {Yes} (final states are labeled in blue)
- $\delta: \mathbf{Q} \times \Sigma \longrightarrow \mathbf{Q}$ delta Yes 0 = Yes delta Yes 2 = Yes
 - delta Yes 1 = No
 - delta No 0 = No delta No 1 = Yes
 - delta No 2 = No

parity(Yes) = 0
parity(No) = 1

Let $s \in Q$, $d \in \Sigma$ Delta(s,d) = parity⁻¹ ((3 * (parity s) + d) `mod` 2)

Six cases

- 1. delta Yes 0 = Yes
- 2. delta Yes 2 = Yes
- 3. delta Yes 1 = No
- 4. delta No 0 = No
- 5. delta No 1 = Yes
- 6. delta No 2 = No

parity⁻¹ ((3 * (parity Yes) + 0) `mod` 2)

- parity⁻¹ ((3 * (parity Yes) + 2) `mod` 2)
- parity⁻¹ ((3 * (parity Yes) + 1) `mod` 2)
- parity⁻¹ ((3 * (parity No) + 0) `mod` 2)
- parity⁻¹ ((3 * (parity No) + 1) `mod` 2)
- parity⁻¹ ((3 * (parity No) + 2) `mod` 2)

parity(Yes) = 0
parity(No) = 1

Addition as a language

- Let A,B,C be elements of {0,1}ⁿ I.e. binary numbers of some fixed length n
- Consider the language L = { ABC | A+B=C }
- E.g. Let n=4 bits wide
 - 0000 0000 0000 is in L
 - 0010 0001 0011 is in L
 - 1111 0001 0000 is not in L

How can we encode this as a DFA?

- Change of representation
- Let a string of 3 binary numbers, such as "0010 0001 0011" be encoded as a string of 3-tuples such as "(0,0,0) (0,0,0) (1,01) (0,1,1)"
- Why can we do this? Nothing says the alphabet can't be a set of triples!
- Now lets reverse the order of the triples in the string "(0,1,1) (1,01) (0,0,0) (0,0,0)"

- Least significant bit first.

Encode as follows

Mealy Machine

• A Mealy is a 6-tuple $\mathbf{A} = (\mathbf{Q}, \Sigma, \mathbf{O}, \mathbf{s}, \delta, \text{emit})$, where

- -Q is a set of states
- Σ is the alphabet of input symbols (A in Hein)
- 0 is the alphabet of the output
- ${\bf s}$ is an element of ${\bf Q}$ --- the initial state
- $\delta: \mathbf{Q} \times \Sigma \longrightarrow \mathbf{Q}$ is the transition function
- emit: \mathbf{Q} × $\Sigma \longrightarrow$ \mathbf{O} is the emission function