
NFA defined

Sipser pages 47 - 54

NFA

• A Non-deterministic Finite-state Automata
(NFA) is a language recognizing system similar
to a DFA.

• It supports a level of non-determinism. I.e. At
some points in time it is possible for the
machine to take on many next-states.

• Non-determinism makes it easier to express
certain kinds of languages.

Nondeterministic Finite Automata (NFA)

• When an NFA receives an input symbol a, it can make a
transition to zero, one, two, or even more states.
– each state can have multiple edges labeled with the same

symbol.

• An NFA accepts a string w iff there exists a path labeled
w from the initial state to one of the final states.
– In fact, because of the non-determinism, there may be

many states labeled with w

Example N1

• The language of the following NFA consists of all
strings over {0,1} whose 3rd symbol from the
right is 0.

• Note Q0 has multiple transitions on 0 and Q3 has
no transitions on both 0 and 1

Q0 Q1 Q3

0

0 0,1 Q2

1

0,1

Example N2

• The NFA N2 accepts strings beginning with 0.

• Note Q0 has no transition on 1
– It is acceptable for the transition function to be

undefined on some input elements for some states.

Q0 Q2
0 0,1

Note no transitions
from Q0 on 1

NFA Processing

• Suppose N1 receives the input string 0011. There are three
possible execution sequences:

• q0→ q0→ q0→ q0→ q0
• q0→ q0→ q1→ q2→ q3
• q0→ q1→ q2→ q3

 • Only the second finishes in an accept state. The third even gets stuck
(cannot even read the fourth symbol).
 • As long is there is at least one path to an accepting state , then the
string is accepted.

Q0 Q1 Q3

0

0 0,1 Q2

1

0,1

Input = 0011

 0 0 1 1
q0→ q0→ q0→ q0→ q0
q0→ q0→ q1→ q2→ q3
q0→ q1→ q2→ q3

NFA

Path Tree

Note, that
this path is
stuck at q3

A note about NFA’s

• In the Sipser text book (page 53) the
definition for an NFA is slightly different from
what we will see on the next page.

• The NFA that Sipser defines, we call an NFAe.
– It allows transitions on edges labeled with ε (the

empty string)

• We talk about this in a separate set of notes.

 Formal Definition
• An NFA is a quintuple A= (Q,Σ,δ,s,F) , where the

first four components are as in a DFA, and the transition
function produces values in P(Q) (the power set of Q)
instead of Q. Thus

δ: Q × Σ →P(Q) note that δ returns a set of states!
 It might return the emptyset!

• A NFA A =(Q,Σ,δ,s,F), accepts a string w1w2…wn
(an element of Σ∗) iff there exists a sequence of states
r1r2…rnrn+1 such that

1. r1 = s

2. ri+1 Є δ(ri,wi)
3. rn+1 ∈ F

Compare with DFA

A DFA = (Q,Σ,δ,q0,F), accepts a string
 w = “w1w1…wn” iff

There exists a sequence of states [r0, r1, … rn]
 with 3 conditions
1. r0 = q0
2. δ(ri,wi+1) = ri+1
3. rn ∈ F

This is a simpler version of the
definition on page 53-54 of

Sipser. We disallow transitions
on ε, and we changed the way

we index the string.

The extension of the transition function

• Let an NFA A=(Q,Σ,δ,s,F)

• The extension δ : Q × Σ∗ →P(Q) extends δ so that it is defined
over a string of input symbols, rather than a single symbol. It is defined by

– δ(q,ε)={q}
– δ(q,x:xs) = ∪p∈δ(q,x) δ(p,xs)
Compute this by taking the union of the sets

δ(p,xs), where p varies over all states in the set

δ(q,x)

• First compute δ(q,x), this is a set, call it S.
• for each element, p in S, compute δ(p,xs),
• Union all these sets together.

Intuition

• At any point in the walk over a string, such as
“000” the machine can be in a set of states.

• To take the next step, on a character ‘c’, we
create a new set of states. All those reachable
from any of the old sets on a single ‘c’

δ(q,ε)={q}
δ(q,x:xs) = ∪p∈δ(q,x) δ(p,xs)

Consider computing δ(Q0,001)
The answer will be {Q0,Q2,Q3}

Start by one-step computing
δ(Q0,0)={Q0,Q1}

So for each of Q0,Q1 recursively
many-step compute

δ(Q0,01) = {Q0,Q2}
δ(Q1,01) = {Q3}

Then union them together!

Another NFA Acceptance Definition

• An NFA accepts a string w iff δ(s,w)
contains a final state. The language of an NFA
N is the set L(N) of accepted strings:

• L(N) = {w | δ(s,w) ∩ F ≠ ∅}

• Compare this with the 2 definitions of DFA acceptance in last weeks lecture.

 A DFA = (Q,Σ,δ,q0,F), accepts a string
 w = “w1w1…wn” iff

There exists a sequence of states [r0, r1, … rn]

 with 3 conditions
1. r0 = q0
2. δ(ri,wi+1) = ri+1
3. rn ∈ F

A DFA =(Q,Σ, δ,q0,F) accepts a string w iff δ(q0,w)∈ F

More formally
L(A)={w | δ(Start(A),w)∈ Final(A)}

Implementation

• Implementation of NFAs has to be
deterministic, using some form of
backtracking to go through all possible
executions.

• Any thoughts on how this might be
accomplished?

In Haskell
data NFA q s =
 NFA [q] -- states
 [s] -- symbols
 (q -> s -> [q]) -- trans
 q -- start
 [q] -- accept states

Compare with DFA

data DFA q s =
 DFA [q] -- states
 [s] -- symbols
 (q -> s -> q) -- trans
 q -- start state
 [q] -- accept states

Path acceptance
allSeq xs 0 = []
allSeq xs 1 = [[x] | x <- xs]
allSeq xs n = [y:ys | ys <- allSeq xs (n-1), y <- xs]

cond1 nfa (r:rs) = r == (start nfa)
cond1 nfa [] = False

cond2 nfa [] [r] = True
cond2 nfa (w:ws) (r1:r2:rs) =
 (elem r2 (trans nfa r1 w)) && (cond2 nfa ws (r2:rs))
cond2 nfa _ _ = False

cond3 nfa [r] = isFinal nfa r
cond3 nfa (r:rs) = cond3 nfa rs
cond3 nfa _ = False

cond nfa ws path = cond1 nfa path &&
 cond2 nfa ws path &&
 cond3 nfa path

accept1 nfa ws = any (cond nfa ws) paths
 where paths = allSeq (states nfa) (1 + length ws)

String = “ab”
Seq C1 C2 C3
[0,0,0]= T F F
[1,0,0]= F F F
[2,0,0]= F F F
[0,1,0]= T T F
[1,1,0]= F T F
[2,1,0]= F F F
[0,2,0]= T F F
[1,2,0]= F F F
[2,2,0]= F F F
[0,0,1]= T F T
[1,0,1]= F F T
[2,0,1]= F F T
[0,1,1]= T T T
[1,1,1]= F T T
[2,1,1]= F F T
[0,2,1]= T F T
[1,2,1]= F F T
[2,2,1]= F F T
[0,0,2]= T F F
[1,0,2]= F T F
[2,0,2]= F F F
[0,1,2]= T F F
[1,1,2]= F F F
[2,1,2]= F F F
[0,2,2]= T F F
[1,2,2]= F F F
[2,2,2]= F T F

w = “w1w1…wn” iff
There exists a sequence of states
[r0, r1, … rn] with 3 conditions

1. r0 = q0
2. δ(ri,wi+1) = ri+1
3. rn ∈ F

Transition extension acceptance

closure:: Ord q => NFA q s -> [q] -> s -> [q]
closure nfa qs s =
 unionsL [trans nfa q s | q <- qs]

deltaBar nfa q [] = [q]
deltaBar nfa q (w:ws) =
 unionsL [deltaBar nfa p ws
 | p <- closure nfa [q] w]

acceptNFA2 nfa ws =
 not(null(intersect last (accept nfa)))
 where last = deltaBar nfa (start nfa) ws

deltaBar n2 (start n2) "ab " = [0,1]
Not(null(intersect [0,1] (accept n2))) = True

Trace
input
“ab”

Paths
on
input
“ab”

	NFA defined
	NFA
	Nondeterministic Finite Automata (NFA)
	Example N1
	Example N2
	NFA Processing
	Slide Number 7
	A note about NFA’s
	 Formal Definition
	The extension of the transition function
	Intuition
	Slide Number 12
	Another NFA Acceptance Definition
	Implementation
	In Haskell
	Path acceptance
	Transition extension acceptance

