
NFA defined 

Sipser pages 47 - 54 



NFA 

• A Non-deterministic Finite-state Automata 
(NFA) is a language recognizing system similar 
to a DFA. 

• It supports a level of non-determinism. I.e.  At 
some points in time it is possible for the 
machine to take on many next-states. 

• Non-determinism makes it easier to express 
certain kinds of languages. 



Nondeterministic Finite Automata (NFA) 

• When an NFA receives an input symbol a, it can make a 
transition to zero, one, two, or even more states. 
– each state can have multiple edges labeled with the same 

symbol. 
 

• An NFA accepts a string w iff there exists a path labeled 
w from the initial state to one of the final states. 
– In fact, because of the non-determinism, there may be 

many states labeled with w 
  

 



Example N1 

• The language of the following NFA consists of all 
strings over {0,1} whose 3rd symbol from the 
right is 0. 
 
 
 
 
 

• Note Q0 has multiple transitions on 0 and Q3 has 
no transitions on both 0 and 1 
 

Q0 Q1 Q3 

0 

0 0,1 Q2 

1 

0,1 



Example N2 

• The NFA N2 accepts strings beginning with 0. 
 
 
 
 

• Note Q0  has no transition on 1 
– It is acceptable for the transition function to be 

undefined on some input elements for some states. 
 

 

 
 

Q0 Q2 
0 0,1 

Note no transitions 
from Q0  on 1 



NFA Processing 

• Suppose N1 receives the input string 0011. There are three 
possible execution sequences: 

• q0→ q0→ q0→ q0→ q0 
• q0→ q0→ q1→ q2→ q3 
• q0→ q1→ q2→ q3 

 
 
 
 
 

 • Only the second finishes in an accept state. The third even gets stuck 
(cannot even read the fourth symbol).  
 • As long is there is at least one path to an accepting state , then the 
string is accepted. 

Q0 Q1 Q3 

0 

0 0,1 Q2 

1 

0,1 



Input = 0011 
 
        0             0             1              1 
q0→ q0→ q0→ q0→ q0 
q0→ q0→ q1→ q2→ q3 
q0→ q1→ q2→ q3 

NFA 

Path Tree 

Note, that  
this path is 
stuck at q3 



A note about NFA’s 

• In the Sipser text book  (page 53) the 
definition for an NFA is slightly different from 
what we will see on the next page. 

• The NFA that Sipser defines, we call an NFAe. 
– It allows transitions on edges labeled with ε (the 

empty string)   

• We talk about this in a separate set of notes. 



      Formal Definition 
• An NFA is a quintuple A= (Q,Σ,δ,s,F) , where the 

first four components are as in a DFA, and the transition 
function produces values in P(Q) (the power set of Q) 
instead of Q. Thus  
 
δ: Q × Σ →P(Q)  note that δ returns a set of states!  
                                                                                It might return the emptyset! 
 

 

• A NFA  A =(Q,Σ,δ,s,F), accepts a string w1w2…wn 
(an element of Σ∗ ) iff   there exists a sequence of states 
r1r2…rnrn+1 such that 
 

1. r1 = s 

2. ri+1 Є δ(ri,wi) 
3. rn+1 ∈ F  

 

Compare with DFA 
 
A DFA  = (Q,Σ,δ,q0,F), accepts a string  
    w = “w1w1…wn” iff 

 
There exists a sequence of states  [r0, r1, … rn]  
                  with 3 conditions 
1. r0 = q0 
2. δ(ri,wi+1) = ri+1 
3. rn ∈ F 

This is a simpler version of the 
definition on page 53-54 of 

Sipser.  We disallow transitions 
on ε, and we changed the way 

we index the string. 



The extension of the transition function 

• Let an NFA  A=(Q,Σ,δ,s,F) 
 

• The extension δ : Q × Σ∗ →P(Q)  extends δ so that it is defined 
over a string of input symbols, rather than a single symbol. It is defined by 
 
– δ(q,ε)={q} 
– δ(q,x:xs) = ∪p∈δ(q,x) δ(p,xs)  
Compute this by taking the union of the sets  
 
δ(p,xs), where p varies over all states in the set   
 
δ(q,x) 
 

• First compute δ(q,x), this is a set, call it S. 
• for each element, p in S, compute δ(p,xs),  
• Union all these sets together. 
 

 



Intuition 

• At any point in the walk over a string, such as 
“000” the machine can be in a set of states. 
 

• To take the next step, on a character ‘c’,  we 
create a new set of states. All those reachable 
from any of the old sets on a single ‘c’ 



δ(q,ε)={q} 
δ(q,x:xs) = ∪p∈δ(q,x) δ(p,xs) 
  
Consider computing   δ(Q0,001)  
The answer will be {Q0,Q2,Q3} 
 
Start by one-step  computing  
δ(Q0,0)={Q0,Q1} 
 
So for each of Q0,Q1  recursively  
many-step compute 
 

δ(Q0,01) = {Q0,Q2} 
δ(Q1,01) = {Q3} 
 

Then union them together! 
 

 
 



Another NFA Acceptance Definition 

• An NFA accepts a string w iff  δ(s,w) 
contains a final state. The language of an NFA 
N is the set L(N) of accepted strings: 
 

• L(N) = {w | δ(s,w) ∩ F ≠ ∅} 
 

• Compare this with the 2 definitions of DFA acceptance in last weeks lecture. 

 A DFA  = (Q,Σ,δ,q0,F), accepts a string  
    w = “w1w1…wn” iff 

 
There exists a sequence of states  [r0, r1, … rn]  

                  with 3 conditions 
1. r0 = q0 
2. δ(ri,wi+1) = ri+1 
3. rn ∈ F 

A DFA  =(Q,Σ, δ,q0,F) accepts a string w iff δ(q0,w)∈ F 
  
More formally  
L(A)={w | δ(Start(A),w)∈ Final(A)} 



Implementation 

• Implementation of NFAs has to be 
deterministic, using some form of 
backtracking to go through all possible 
executions.  
 

 

• Any thoughts on how this might be 
accomplished? 
 
 



In Haskell 
data NFA q s =  
  NFA [q]              -- states 
      [s]              -- symbols 
      (q -> s -> [q])  -- trans 
      q                -- start 
      [q]              -- accept states 

Compare with DFA 
 
data DFA q s =  
  DFA [q]           -- states 
      [s]           -- symbols 
      (q -> s -> q) -- trans 
      q             -- start state 
      [q]           -- accept states 



Path acceptance 
allSeq xs 0 = [] 
allSeq xs 1 = [[x] | x <- xs ] 
allSeq xs n = [ y:ys | ys <- allSeq xs (n-1), y <- xs] 
 
cond1 nfa (r:rs) = r == (start nfa) 
cond1 nfa [] = False 
 
cond2 nfa [] [r] = True 
cond2 nfa (w:ws) (r1:r2:rs) = 
   (elem r2 (trans nfa r1 w)) && (cond2 nfa ws (r2:rs)) 
cond2 nfa _ _ = False   
 
cond3 nfa [r] = isFinal nfa r 
cond3 nfa (r:rs) = cond3 nfa rs 
cond3 nfa _ = False 
 
cond nfa ws path = cond1 nfa path &&  
                   cond2 nfa ws path && 
                   cond3 nfa path 
 
accept1 nfa ws = any (cond nfa ws) paths  
  where paths = allSeq (states nfa) (1 + length ws) 

String = “ab” 
Seq       C1 C2 C3 
[0,0,0]= T  F  F 
[1,0,0]= F  F  F 
[2,0,0]= F  F  F 
[0,1,0]= T  T  F 
[1,1,0]= F  T  F 
[2,1,0]= F  F  F 
[0,2,0]= T  F  F 
[1,2,0]= F  F  F 
[2,2,0]= F  F  F 
[0,0,1]= T  F  T 
[1,0,1]= F  F  T 
[2,0,1]= F  F  T 
[0,1,1]= T  T  T 
[1,1,1]= F  T  T 
[2,1,1]= F  F  T 
[0,2,1]= T  F  T 
[1,2,1]= F  F  T 
[2,2,1]= F  F  T 
[0,0,2]= T  F  F 
[1,0,2]= F  T  F 
[2,0,2]= F  F  F 
[0,1,2]= T  F  F 
[1,1,2]= F  F  F 
[2,1,2]= F  F  F 
[0,2,2]= T  F  F 
[1,2,2]= F  F  F 
[2,2,2]= F  T  F 

w = “w1w1…wn” iff 
There exists a sequence of states  
[r0, r1, … rn]     with 3 conditions 

1. r0 = q0 
2. δ(ri,wi+1) = ri+1 
3. rn ∈ F 



Transition extension acceptance 

closure:: Ord q => NFA q s -> [q] -> s -> [q] 
closure nfa qs s =  
   unionsL [trans nfa q s | q <- qs] 
 
deltaBar nfa q [] = [q] 
deltaBar nfa q (w:ws) =  
   unionsL [ deltaBar nfa p ws  
           | p <- closure nfa [q] w] 
 
acceptNFA2 nfa ws =  
   not(null(intersect last (accept nfa))) 
  where last = deltaBar nfa (start nfa) ws 
 

deltaBar  n2  (start n2)  "ab "                   =   [0,1] 
Not(null(intersect [0,1] (accept n2)))  =  True 

Trace 
input 
“ab” 

Paths 
on 
input 
“ab” 
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