Regular Language Questions

Define NFAs for the following over the alphabet $\{a, b\}$

- $\{w$ | length(w)=3 or w is all a's $\}$
- $\{w \mid w$ consists of alternating a's and b's $\}$
- $\{w \mid w$ is any string except "aba" $\}$
- $\{w \mid w=x \bullet y$ where x is an even number of a 's and y is an odd number of b 's \}

1. Which of the following are correct

A. Every DFA is a NFA.
B. If a language, L , is recognized by a DFA there is an NFA that recognizes L as well.
C. Every NFA is a DFA.
D. Every language is recognized by either an NFA or a DFA.

2. True or False

- The following DFA $\left(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{q}_{\boldsymbol{0}}, \mathbf{F}\right)$ recognizes all strings of even length over the alphabet $\{\mathrm{a}, \mathrm{b}\}$

$$
\begin{gathered}
Q=\{1,2,3\} \\
\Sigma=\{a, b\} \\
\delta 1 a->2 \\
1 \mathrm{~b}->2 \\
2 \mathrm{a}->3 \\
2 \mathrm{~b}->3 \\
3 \mathrm{a}->2 \\
3 \mathrm{~b}->2 \\
\mathbf{q}_{0}=1 \\
\mathbf{F}=\{3\}
\end{gathered}
$$

3. True or False

- S is a prefix of T if there exists another string R, such that $S \bullet R=T$
- Given a DFA $\mathrm{M}=\left(\mathbf{Q}, \mathbf{\Sigma}, \boldsymbol{\delta}, \mathbf{q}_{\mathbf{0}}, \mathbf{F}\right)$ that recognizes the language L. The following is a DFA that recognizes the prefixes of L.
- $M_{\text {prefix }}=\left(\mathbf{Q}, \Sigma, \boldsymbol{\delta}, \mathbf{q}_{0}, F_{2}\right)$
- $\mathbf{F}_{\mathbf{2}}=\left\{q \mid q \in Q\right.$ and there is a path from \mathbf{q}_{0} to $\left.q\right\}$

4. True or False

- T is a suffix of S iff
- Exists string Q such that $Q \bullet T=S$

If W is a regular language, then is the language $\{q \mid w \in W$ and q is a suffix of $w\}$ regular?

5. Are comments Regular?

- In certain languages, comment appear between delimiters. For example /* this is a comment */
Where "/*" and "*/" are the delimiters.
A comment must begin with "/*" and end with "*/" but have no intervening "*/".
Assume the alphabet $=\left\{a, b,{ }^{*}, /\right\}$

6. True or False

- Let w^{R} be the reversal of the string w
- If T is a regular language, is the language
$-\left\{x x^{R} \mid x \in T\right\}$ regular?

