Regular Expressions

Sipser pages 63-66

A new Computation System

- DFAs, NFs, ε-NFAs all describe a language in an operational manner. They describe a machine that one can execute in order to recognize a string.
- An alternate method of describing a set of strings is to describe the properties it should have.
- Regular-Expressions are based upon the closure properties we have studied.

Regular Expressions

- Fix an alphabet Σ. We define several ways to form a regular expression and how each of them specifies a language.
- **Definition.** The set of *regular expressions* (with respect to Σ) is defined inductively by the following rules:
 - 1. The symbols \varnothing and ε are regular expressions
 - 2. Every symbol $\alpha \in \Sigma$ is a regular expression
 - 3. If E and F are regular expressions, then (E*), (EF) and (E+F) are regular expressions.

Juxtaposition of two RE uses an implicit • or concatenation

Sipser uses EUF, but we also may use E+T

Note how the closure properties are used here

Computation system as Data

- We have made a big point that computation systems are just data, regular expressions are no exception.
- We can represent them as data. Here we use Haskell as an example.

```
data RegExp a

= Epsilon -- the empty string ""

| Empty -- the empty set

| One a -- a singleton set {a}

| Union (RegExp a) (RegExp a) -- union of two RegExp

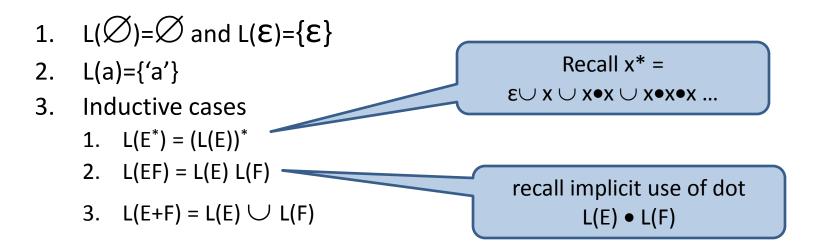
| Cat (RegExp a) (RegExp a) -- Concatenation

| Star (RegExp a) -- Kleene closure
```

How would you represent regular expressions in your favorite language?

Regular Expressions as Languages

Definition. For every regular expression E, there is an associated language L(E), defined inductively as follows:



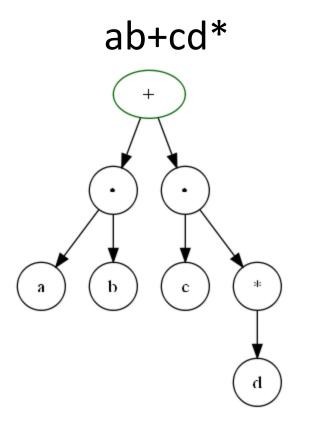
 Definition. A language is regular if it is of the form L(E) for some regular expression E.

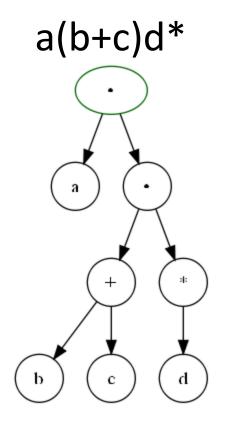
Equivalence

- 1. We say that regular expressions E and F are *equivalent* iff L(E)=L(F).
- 2. We treat equivalent expressions as equal (just as we do with arithmetic expressions; (e.g., 5+7=7+5).
- 3. Equivalences (E+F)+G = E+(F+G) and (EF)G=E(FG) allow us to omit many parentheses when writing regular expressions.
- 4. Even more parentheses can be omitted when we declare the precedence ordering of the three operators :
 - star (binds tightest)
 - 2. concatenation
 - 3. union (binds least of all)

Regular expressions as Trees

 Every RE has a tree like structure. Binding rules specify this structure.





RE's over {0,1}

Fill in the blank

```
• E_1 = 0+11 then L(E_1) = ______

• E_2 = (00+01+10+11)* then L(E_2) = _____

• E_3 = 0*+1* then L(E_3) = _____

• E_4 = (00*+11*)* then L(E_4) = _____

• E_5 = (1+\epsilon)(01)*(0+\epsilon)then L(E_5) = _____
```

Computing a language

- We can compute a language by using the definition of the meaning of a regular expression
- L(a+b.c*) = L(a) U L(b.c*)
- $L(a+b.c^*) = L(a) U (L(b).L(c^*))$
- $L(a+b.c*) = \{a\} \cup (\{b\} . \{c\}*)$
- L(a+b.c*) = {a} U ({b}.{ε,c,cc,ccc,..., cⁿ})
- L(a+b.c*) = {a} U ({b,bc,bcc,bccc,..., bcⁿ}
- L(a+b.c*) = {a,b,bc,bcc,bccc,..., bcⁿ})

Laws about Regular expressions

- The regular expressions form an algebra
- There are many laws (just as there are laws about arithmetic (5+2)=(2+5)

Laws about +

1.
$$R + T = T + R$$

2.
$$R + \emptyset = \emptyset + R = R$$

3.
$$R + R = R$$

4.
$$R + (S + T) = (R + S) + T$$

Laws about.

1.
$$R.\emptyset = \emptyset$$
. $R = \emptyset$

2.
$$R.\epsilon = \epsilon R = R$$

$$3. (R.S).T = R.(S.T)$$

• With Implicit.

1.
$$R\emptyset = \emptyset R = \emptyset$$

- 2. $R\epsilon = \epsilon R = R$
- 3. (RS)T = R(ST)

Distributive Properties

$$1. R(S+T) = RS + RT$$

$$2. (S + T)R = SR + TR$$

Closure Properties *

- 1. $\varnothing * = \varepsilon * = \varepsilon$
- 2. $R^* = R^*R^* = (R^*)^* = R + R^*$
- 3. $R^* = \varepsilon + R^* = (\varepsilon + R)^* = (\varepsilon + R)R^* = \varepsilon + RR^*$
- 4. $R^* = (\epsilon + ... + R^k)^*$ for all $k \ge 1$
- 5. $R^* = \varepsilon + R + ... + R^{(k-1)} + R^k R^*$ for all $k \ge 1$
- 6. $RR^* = R^*R$
- 7. $R(SR)^* = (RS)^*R$
- 8. $(R^*S)^* = \varepsilon + (R + S)^*S$
- 9. $(RS^*)^* = \varepsilon + R(R + S)^*$

Next section

- We will study how to make recognizers from regular expressions
- We will prove that RE and DFAs describe the same class of languages.