
Minimal DFA 

Among the many DFAs accepting the same 
regular language L, there is exactly one 
(up to renaming of states) which has the 
smallest possible number of states.   

 
Moreover, it is possible to obtain that 

minimal DFA for L starting from any other 
by the State Minimization Algorithm. 

 



Deciding Equivalence of DFAs 

With this algorithm: 
 
We can check whether two DFAs A and B represent 

the same regular language. 
 
Just minimize both A and B and see if the obtained 

automata are isomorphic (equal up to state 
renaming). 



Decidability of the Regular Languages 

Since we can produce an equivalent DFA for 
any regular expression or ε-NFA, we will 
know how to recognize whether any two 
given representations of regular 
languages are equivalent. 

 
Transform both into into DFAs:  X and Y 
Minimize X and Y to  Xmin and Ymin 
Test if Xmin and Ymin are isomorphic. 
 



Two algorithms 

In this lecture we will see two algorithms 
for minimizing DFAs. 

 
They both work by partitioning the states of 

the DFA into equivalence classes. 
 
The algorithms differ by how they do the 

partitioning 
Top Down – From large partitions to smaller ones 
Bottom up – From unit partitions to larger ones 



Equivalence Relations and Partitions 

A partition of a set A is a set {C1,C2,…,Ck} of 
subsets of A such that:  

• Ci ≠ ∅ 
• Ci ∩ Cj = ∅  for i ≠ j 
• C1∪ C2∪ … ∪ Ck = A  
 

C1 C2 

C3 
Ck 

. . . 



Now if we define a relation ~ on A by: x ~ y iff x 
and y belong to the same partition set; then this 
relation will satisfy the properties of an 
equivalence relation: 
 

• x ~ x (reflexivity) 
• x ~ y ⇒ y ~ x (symmetry) 
• x ~ y and y ~ z ⇒ x ~ z (transitivity) 

  
The correspondence between partitions and 

equivalence relations goes both ways. If we have  
an equivalence relation ≈ on A then there is an 
associated partition of the set A. Its classes are 
called equivalence classes of  ≈ . The class 
containing x is [x] = { y∈ A | y ≈ x}.  



Equivalence of States 

Definition. Two states p and q of a DFA are 
equivalent (notation: p ≡ q) when, for every 
string w: w leads from p to a final state if and 
only if w leads from q to a final state. 

 
Non-equivalent states are called distinguishable. To 

show that two states are distinguishable, we 
need to find only one string that leads from one 
of them to a final state, and leads from the other 
to a non-final state. 
 

The empty string distinguishes every final state 
from every non-final state. Thus, if p ≡ q, then p 
and q are either both final or both non-final.  



Example 

• States 0 and 1 are 
distinguishable, since  

“a” from 0  -> 1   Non-final 
“a” from 1 ->  3,   Final 
 

• States 1 and 2 are 
indistinguishable by any 
string over the alphabet  
{a,b} 

All strings that lead from 1 or 
2, that end up in a final state 
from 1, also lead to a final 
state from 2! 



Testing two final (or two non-final) states for 
equivalence is more difficult. In this example, q and r 
are equivalent. No string beginning with 0 can 
distinguish them: the two paths converge after the 
first arc. For strings beginning with 1, the two paths 
will alternate between q and r while reading the 
initial 1's; as soon as the first 0 is read (if ever), the 
paths will converge at p.  

p q 

r 

0 

0 

0 
1 

1 1 



Minimal Automata 

Definition. A DFA is minimal iff 
 

1. All its states are reachable from the start 
state; 

2. All its states are distinguishable. 
 
 

Theorem. Two minimal automata for the 
same language are isomorphic.  
 
 

 



The quotient 
The Quotient (State Collapse) Construction. 
 
State equivalence relation has this fundamental property:   

If p ≡ q then for every a∈Σ, δ(p,a) ≡ δ(q,a). 
 
Indeed, if a string w distinguishes δ(p,a) from δ(q,a), then 

the string aw will distinguish p from q.  
 
 



The quotient construction 

Given any DFA A 
We can construct the quotient DFA A≡  

 
1. Its states are the equivalence classes of the states of A  

 
2. Its transition relation is  δ≡(C,a) = C’  where   

1. δ(x,a)=y  
2. C is the class that contains x 
3. C’ is the class that contains y 

 
3. The start state of A≡ is the equivalence class of the 

start state of A,  
 

4. The final states of A≡ are equivalence classes of final 
states of A.  
 
 
 
 

 



Quotient Example 

Here is the quotient of the DFA of our example. 

p q,r 
0,1 

1 

0 

p q 

r 

0 

0 

0 
1 

1 1 

Theorem. For any DFA, A, in which all states are reachable from 
the start state, the automaton A≡ is minimal. 



Minimization Algorithm  

Any minimization algorithm has two parts: 
– Eliminate states of the input DFA that are not reachable 

from the start state. 
– Do the quotient construction on the resulting DFA. 

  
The first step is easy. The second is easy once we 

manage to partition the states into equivalence 
classses.  
 

There are two possible ways to do this 
 

1. Top down - equivalence classes of ≡ are found by an iterative 
construction that produces a sequence of finer and finer partitions.  
 

2. Bottom up – we construct small (size 2) partitions and then merge 
them (Algorithm in the Hein Text book) 



Top Down approach 

Define p≡iq to mean “p and q cannot be 
distinguished by strings of length ≤ i”. We can 
always compute directly ≡0 ; it has two classes: 
final states and non-final states.  

 
The fact   p ≡i+1 q  ⇔ p ≡i q and δ(p,a) ≡i δ(q,a) 

for every a∈Σ is the basis for effectively 
constructing ≡i+1 when ≡i is known. 
 

For each equivalence class, try and break it into 
two or more new equivalence classes by finding 
some symbol which distinguishes two states in 
the current class. 

 
 

 



Structure 

Base Case 
If an equivalence class has only one state, 

we’re done with that state. It cannot be 
broken down into a “finer” equivalence. 
 

Iterative Step 
We repeat this construction until (≡i+1)= (≡i).  

Going further on would not change the 
equivalence relation. At this point we have our 
desired ≡. 
 

Note the worst we can do is have every state in its 
own equivalence class, in which case the original 
DFA was already minimal. 



Example 

We want the minimal automaton equivalent 
to the following. 

 

1 3 

a 

b 

2 4 

5 7 6 8 

a 

a 

a 
a 

a 

a 
a 

b 

b 

b 

b 

b 

b b 



Automata and Formal Languages 

Tim Sheard 18 Lecture 10 

1 3 

a 

b 

2 4 

5 7 6 8 

a 

a 

a 
a 

a 

a 
a 

b 

b 

b 

b 

b 

1 3 

a 

b 

2 

5 7 6 8 

a 

a 

a 

a 

a 
a 

b 

b 

b 

b 

b First remove the 
unreachable state 4 

The transition table is 
now useful. 1 2 3 5 6 7 8 

a 2 7 1 8 3 7 7 
b 6 3 3 6 7 5 3 



Automata and Formal Languages 

Tim Sheard 19 Lecture 10 

1 3 

a 

b 

2 

5 7 6 8 

a 

a 

a 

a 

a 
a 

b 

b 

b 

b 

b 

1 2 3 5 6 7 8 
a 2 7 1 8 3 7 7 
b 6 3 3 6 7 5 3 

We start with ≡0; its two 
classes are X= {1,2,5,6,7} 
and Y={3} 

The equivalence class {3} is 
done. It cannot be further 
broken down into finer 
equivalences. So 
concentrate on {1,2,5,6,7}  1 2 3 5 6 7 8 

a X X X X Y X X 
b X Y Y X X X Y 

Focus on the colors, not the states 



Automata and Formal Languages 

Tim Sheard 20 Lecture 10 

Now we need to find ≡1;  We need to look at the table for the 
states in X={1,2,5,6,7} without distinguishing between states in 
the same ≡0 class. We do this by observing the different colors 
or symbols in each column of the new transition table. 

 

Recall we can  ignore  the columns labeled by Y= {3}  because it 
is already fully refined (as small as possible). 

1 2 3 5 6 7 8 
a X X  X X Y X X 
b X Y  Y X X X Y 

1 2 3 5 6 7 8 
a 2 7 7 8 3 7 7 
b 6 3 3 6 7 5 3 



Automata and Formal Languages 

Tim Sheard 21 Lecture 10 

1 2 3 5 6 7 8 
a 2 7   8 3 7 7 
b 6 3   6 7 5 3 

Two elements of the same ≡0 class belong to the same ≡1 class when their 
corresponding columns are equal (I.e. have the same color or symbol.)  
So in this table we have three different patterns X/X ,  X/Y , and Y/X, 
and thus we break {1,2,5,7,8} into three different equivalent classes.  

X/X {1,5,7} = U                               {3} = Y 

X/Y {2,8}    = V                               Remember to propagate the  

Y/X {6}       = W                              already done states {3}. 

Now identify a new color (or symbol) to each of these sets. And redo the 
table.  

1 2 3 5 6 7 8 
a 2 7 1 8 3 7 7 
b 6 3 3 6 7 5 3 

1 2 3 5 6 7 8 
a X X   X Y X X 
b X Y   X X X Y 

1 2 3 5 6 7 8 
a V U U V Y U U 
b W Y Y W U U Y 



Automata and Formal Languages 

Tim Sheard 22 Lecture 10 

1 2 3 5 6 7 8 
a 2 7 1 8 3 7 7 
b 6 3 3 6 7 5 3 

1 2 3 5 6 7 8 
a V U U V Y U U 
b W Y Y W U U Y 

Ignoring the two done states Y={3} and W={6} (of size 
1). We try and further refine U= {1,5,7} and V={2,8} . 
We note that V={2,8} cannot be further refined, but 
{1,5} can be distinguished from {7} because the 
transition on b differs. So naming these two states 

 {1,5} = T 

 {7}    =  Z 
We are led to the  

final transition diagram,  

Because further distinction 

Between {1,5}, and {2,8} 

Is not possible. 

1
=
T 

2
=
V 

3
=
Y 

5
=
T 

6
=
W 

7
=
Z 

8
=
v 

a V Z T V Y Z Z 
b W Y Y W Z T Y 



Automata and Formal Languages 

Tim Sheard 23 Lecture 10 

1
=
T 

2
=
V 

3
=
Y 

5
=
T 

6
=
W 

7
=
Z 

8
=
v 

a V Z T V Y Z Z 
b W Y Y W Z T Y 

T={1,5} V={2,8} Y={3} W={6} Z={7} 

a V={2,8} Z={7} T={1,5} Y={3} Z={7} 

b W={6} Y={3} Y={3} Z={7} T={1,5} 

Redundant columns 

1,5 3 
a 2,8 

6 7 
a 

a 

a 

b 

b 

b 

b 

a 

b 



Bottom up  

Remove states not reachable from the start state (4) 



Bottom up, start with small equivalences 

Compute all distinct pairs of states 
Where both parts of the pair are either 
Both final, or both non-final 
 
[(5,8),(5,7),(5,6),(7,8),(6,8),(6,7), 
 (2,8),(2,5),(2,7),(2,6),(1,8),(1,5), 
(1,7),(1,6),(1,2)] 
 
Note that 3 is the only final state, so 
It participates in no pair 



Keep only good pairs 

[(5,8),(5,7), (5,6) , (7,8) ,(6,8),(6,7),(2,8),(2,5),(2,7), 
(2,6),(1,8),(1,5),(1,7),(1,6),(1,2)] 
 
[(5,7),(2,8),(1,5),(1,7)] 
 
A pair (x,y)  is good if 

1. Its δ is the same on all letters 
 δ(x,a) = δ(y,a) for all a 

 OR 
2. The pair ( δ(x,a), δ(y,a) )  
      is already in the current set of pairs 
      forall a 
 

Example (5,7)  
( δ(5,a), δ(7,a) )  = (7,8) 
( δ(5,B), δ(7,B) )  = (6,5) 
 

 
 



Repeat 

Repeat until no more pairs can be removed 
 
[(5,8),(5,7), (5,6) ,(7,8),(6,8),(6,7),(2,8),(2,5), 
(2,7),(2,6),(1,8),(1,5),(1,7),(1,6),(1,2)] 
 
[(5,7),(2,8),(1,5),(1,7)] 
 
[(2,8),(1,5)] 
So the equivalences are               

{{3},{4},{6},{7},{2,8},{1,5}} 
 
 



Partition 

{{3},{4},{6},{7},{2,8},{1,5}} 
 
 

 



New DFA 

δ({3},a) = {1,5} 
δ({3},b) = {3} 
δ({4},a) = … 
δ({4},b) = 
δ({6},a) = 
δ({6},b) = 
δ({7},a) = 
δ({7},b) = 
δ({2,8},a) = 
δ({2,8},b) = 
δ({1,5},a) = 
δ({1,5},b) = 

 


	Minimal DFA
	Deciding Equivalence of DFAs
	Decidability of the Regular Languages
	Two algorithms
	Equivalence Relations and Partitions
	Slide Number 6
	Equivalence of States
	Example
	Slide Number 9
	Minimal Automata
	The quotient
	The quotient construction
	Quotient Example
	Minimization Algorithm 
	Top Down approach
	Structure
	Example
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Bottom up 
	Bottom up, start with small equivalences
	Keep only good pairs
	Repeat
	Partition
	New DFA

