
Turing Machine Variants 

Sipser Section 3.2 pages  176-182 



Marking symbols 

• It is often convenient to have the Turing 
machine leave a symbol on the tape but to 
mark it in some way 

1 1 0 2 B B B B B B B 

State = 1 

… 

1 1x 0 2 B B B B B B B … 

State = 5 



An expanded alphabet 
• Marking is achieved by expanding the tape 

alphabet. 
• Add a new symbol with a mark for every 

old symbol in the tape alphabet 
• Marking  x  “expands to two moves” 
• δ(q,a) →(ax,r,L) 
• δ(r,ax)→ (ax,q,R) 

 



Strategy 
• Most Turing machine variants are 

introduced by showing how a regular 
Turing machine can simulate the variant. 

• Simulation often uses one or more of the 
following tricks 
– Adding new symbols to the tape alphabet 
– Adding new states to the set of states 
– Adjusting the transition function 
– Placing marks between symbols on the tape 



Multiple Tracks 

• If you'd like the tape cells to contain not one, but three 
symbols (perhaps from different alphabets  Γ1, Γ2, Γ3), 
then you just use  the tape alphabet   Γ = Γ1 × Γ2 × Γ3.  

 
• Effectively, the tape now has 3 “tracks”, which we can 

manipulate independently. 
 

•  Note that the blank symbol of  Γ  is (B1,B2,B3), where Bi 
is  the blank of  Γi.  
 

• A common application of this idea is to use one track for 
“real” data, and the second track for one or more 
“markers” that conveniently mark  some positions in the 
strings.  
 



Example 

• Suppose we want a TM for the language of palindromes 
over {0,1} that contain more 0's than 1's.  

 
• The natural idea is to first check if the input is a 

palindrome, then count the 0's and 1's.  
 
• The palindrome TM of the previous example cannot be 

used because it progressively deletes the input.  
 
• But we can modify it by using the new tape alphabet  Γ '= 
Γ × {*,B}. At the beginning, we put the mark * on the first 
and the last symbol of the input, then move these two 
marks one cell closer, as we check that the ``real'' 
contents of the two cells are equal.  
 



Multi-Tape Turing Machines 
• These generalized TM's can use a finite number 

of independent tapes.  
 
 
 

•   

      0 1 1  0   0   0   1                  

      a a  a   b   c   c  c c  c            

       0   1   1   1   1  1 1 1         



• Transitions are determined by the current 
state and the contents of all scanned cells 
(one on each tape).  
 

• On a transition, the TM moves to the next 
state, scanned symbols get overwritten, 
and each head gets a direction to move  
(L, R, or S (stationary) ).  
 

• Initially, the first tape holds the input. The 
other tapes are blank. 
 
 



Simulating Multitape TM's 

• To simulate k tapes, use one tape with 2k 
tracks. One track holds the contents of 
each tape, another marks the position of 
the corresponding head. 

      0 1 1  0   0   0   1                  

      a a  a   b   c   c  c c  c            

       0   1   1   1   1  1 1 1         

      ↓                         

          ↓                    

              ↓               



• One move of the multitape TM M is simulated by a 
sequence of moves of the one tape TM M_1: 
 
1. M1 moves left, then right, visiting all the ↓'s to see 

what each   tape head of M is scanning. 
2. Based on the scanned symbols of M and the current 

state  of M (that  M1 keeps remembering), M1 knows 
the next move of  M.  

3. With the information about the next move of M 
available, M1 visits each ↓ again, changing the 
corresponding symbol on one of the tracks, and 
moving that ↓ appropriately. 

 



Nondeterministic Turing Machines (NTM) 

• The definition of a NTM is the same as the definition of a TM, except 
that the transition function has the type  δ : Q × Γ → P(Q × Γ × {L,R}) 

 
• At each move, an NTM has a finite set of choices. 

 
• The execution of an NTM is naturally represented by a tree whose 

non-root nodes are all future configurations (we use ID's for 
instantaneous descriptions, because it is easier to write). 

q0w 

ID-1 ID-2 

ID-3 

ID-6 ID-7 

ID-4 ID-5 

ID-9 ID-8 



Simulating NTM's 

• An NTM N is first simulated by a multitape TM M; we know that M 
can be then converted to a one-tape TM. 

 
• On one of its tapes, M maintains a queue of ID's of N that can arise 

from a starting ID q0w. These ID's are separated by a special marker  
⊗ . 

 
• Execution of M goes in big steps.  If ω is the ID at the front end of the 

queue, then M computes all possible ID's  ω1, ... ,ωk  that are 
immediate successors of ω in the execution of N.  

 
• A big step of M consists of dequeuing  ω  and enqueuing  ω1, ... , ωk.  

 
• Sipser gives a different, but equivalent construction. The key is that 

the mechanism visits all the states in a breadth first fashion to be 
sure that nothing is missed. 
 



• Here is how the queue changes in 
the first few big steps (|-|-) when the 
execution of N is as in the picture. 

•  q0w  |-|-  ID-1 ⊗ ID-2 
•            |-|-  ID-2 ⊗ ID-3 
•            |-|-  ID-3 ⊗ ID-4 ⊗ ID-5  
•            |-|-  ID-4 ⊗ ID-5 ⊗ ID-6 ⊗ ID-7 
•            |-|-   ID-5 ⊗ ID-6 ⊗ ID-7 ⊗ ID-8 
•            |-|-   ID-6 ⊗ ID-7 ⊗ ID-8 ⊗ ID-9 

•   

q0
w 

ID-1 ID-2 

ID-3 

ID-6 ID-7 

ID-4 ID-5 

ID-9 ID-8 



• Note that if the N-tree with the root q0w contains an 
accepting ID  ω  (one in which the occurring N-state is 
final), then  ω  will eventually come to the front of the M-
queue, at which point M can recognize it as N-accepting, 
and accept itself. 
 

• Other tape(s) of M are used for  the necessary “localized” 
simulations of M that each big step requires. For 
example, M can use a “scratch tape” to copy the first ID  
ω  from the queue, and compute three  ω's successors  
ω1, … ,ωk.  
 



TM can encode stateful storage 

• Some states of a TM can be structured: 
one component is the ``state proper'', the 
others hold useful data. 

 
• Example. We have a TM M=(Q, Σ, Γ, 
δ,q_0,B,F) and suppose we want to modify 
it so that, when in state r, it swaps the 
contents of the two immediate cells (the 
scanned one and the next one to the right), 
and then go to the state s. 

 



Construction 

• To do this, we pick two unused symbols p,q and 
add to Q the states [q,X] and [p,X], for each X ∈ 
Γ. We also add the transitions 
δ(r,X)       =  ([q,X],X,R) 
δ([q,X],Y) =  ([p,Y],X,L) 
δ([p,Y],X) =  (s,Y,R) 

• for all X,Y ∈ Γ .  
 

• Check that we've achieved the desired effect: 
•  α rXY β  |-  α X[q,X]Y β  |-  α[p,Y]XX β  |-  α YX β  



Example 

• A TM for the language of palindromes can use 
states of the form [q,a] (a ∈ Σ ).  

• Remembering the first symbol of the string, it 
deletes it (puts B in its place), then moves to the 
end of the input.  

• Then it matches the last symbol against the 
stored first symbol and, if the match succeeds, it 
deletes the last symbol, and goes back to the 
first non-blank symbol, and repeats. 
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