
Turing Machine Variants

Sipser Section 3.2 pages 176-182

Marking symbols

• It is often convenient to have the Turing
machine leave a symbol on the tape but to
mark it in some way

1 1 0 2 B B B B B B B

State = 1

…

1 1x 0 2 B B B B B B B …

State = 5

An expanded alphabet
• Marking is achieved by expanding the tape

alphabet.
• Add a new symbol with a mark for every

old symbol in the tape alphabet
• Marking x “expands to two moves”
• δ(q,a) →(ax,r,L)
• δ(r,ax)→ (ax,q,R)

Strategy
• Most Turing machine variants are

introduced by showing how a regular
Turing machine can simulate the variant.

• Simulation often uses one or more of the
following tricks
– Adding new symbols to the tape alphabet
– Adding new states to the set of states
– Adjusting the transition function
– Placing marks between symbols on the tape

Multiple Tracks

• If you'd like the tape cells to contain not one, but three
symbols (perhaps from different alphabets Γ1, Γ2, Γ3),
then you just use the tape alphabet Γ = Γ1 × Γ2 × Γ3.

• Effectively, the tape now has 3 “tracks”, which we can

manipulate independently.

• Note that the blank symbol of Γ is (B1,B2,B3), where Bi
is the blank of Γi.

• A common application of this idea is to use one track for
“real” data, and the second track for one or more
“markers” that conveniently mark some positions in the
strings.

Example

• Suppose we want a TM for the language of palindromes
over {0,1} that contain more 0's than 1's.

• The natural idea is to first check if the input is a

palindrome, then count the 0's and 1's.

• The palindrome TM of the previous example cannot be

used because it progressively deletes the input.

• But we can modify it by using the new tape alphabet Γ '=
Γ × {*,B}. At the beginning, we put the mark * on the first
and the last symbol of the input, then move these two
marks one cell closer, as we check that the ``real''
contents of the two cells are equal.

Multi-Tape Turing Machines
• These generalized TM's can use a finite number

of independent tapes.

•

 0 1 1 0 0 0 1

 a a a b c c c c c

 0 1 1 1 1 1 1 1

• Transitions are determined by the current
state and the contents of all scanned cells
(one on each tape).

• On a transition, the TM moves to the next
state, scanned symbols get overwritten,
and each head gets a direction to move
(L, R, or S (stationary)).

• Initially, the first tape holds the input. The
other tapes are blank.

Simulating Multitape TM's

• To simulate k tapes, use one tape with 2k
tracks. One track holds the contents of
each tape, another marks the position of
the corresponding head.

 0 1 1 0 0 0 1

 a a a b c c c c c

 0 1 1 1 1 1 1 1

 ↓

 ↓

 ↓

• One move of the multitape TM M is simulated by a
sequence of moves of the one tape TM M_1:

1. M1 moves left, then right, visiting all the ↓'s to see

what each tape head of M is scanning.
2. Based on the scanned symbols of M and the current

state of M (that M1 keeps remembering), M1 knows
the next move of M.

3. With the information about the next move of M
available, M1 visits each ↓ again, changing the
corresponding symbol on one of the tracks, and
moving that ↓ appropriately.

Nondeterministic Turing Machines (NTM)

• The definition of a NTM is the same as the definition of a TM, except
that the transition function has the type δ : Q × Γ → P(Q × Γ × {L,R})

• At each move, an NTM has a finite set of choices.

• The execution of an NTM is naturally represented by a tree whose

non-root nodes are all future configurations (we use ID's for
instantaneous descriptions, because it is easier to write).

q0w

ID-1 ID-2

ID-3

ID-6 ID-7

ID-4 ID-5

ID-9 ID-8

Simulating NTM's

• An NTM N is first simulated by a multitape TM M; we know that M
can be then converted to a one-tape TM.

• On one of its tapes, M maintains a queue of ID's of N that can arise

from a starting ID q0w. These ID's are separated by a special marker
⊗ .

• Execution of M goes in big steps. If ω is the ID at the front end of the

queue, then M computes all possible ID's ω1, ... ,ωk that are
immediate successors of ω in the execution of N.

• A big step of M consists of dequeuing ω and enqueuing ω1, ... , ωk.

• Sipser gives a different, but equivalent construction. The key is that

the mechanism visits all the states in a breadth first fashion to be
sure that nothing is missed.

• Here is how the queue changes in
the first few big steps (|-|-) when the
execution of N is as in the picture.

• q0w |-|- ID-1 ⊗ ID-2
• |-|- ID-2 ⊗ ID-3
• |-|- ID-3 ⊗ ID-4 ⊗ ID-5
• |-|- ID-4 ⊗ ID-5 ⊗ ID-6 ⊗ ID-7
• |-|- ID-5 ⊗ ID-6 ⊗ ID-7 ⊗ ID-8
• |-|- ID-6 ⊗ ID-7 ⊗ ID-8 ⊗ ID-9

•

q0
w

ID-1 ID-2

ID-3

ID-6 ID-7

ID-4 ID-5

ID-9 ID-8

• Note that if the N-tree with the root q0w contains an
accepting ID ω (one in which the occurring N-state is
final), then ω will eventually come to the front of the M-
queue, at which point M can recognize it as N-accepting,
and accept itself.

• Other tape(s) of M are used for the necessary “localized”
simulations of M that each big step requires. For
example, M can use a “scratch tape” to copy the first ID
ω from the queue, and compute three ω's successors
ω1, … ,ωk.

TM can encode stateful storage

• Some states of a TM can be structured:
one component is the ``state proper'', the
others hold useful data.

• Example. We have a TM M=(Q, Σ, Γ,
δ,q_0,B,F) and suppose we want to modify
it so that, when in state r, it swaps the
contents of the two immediate cells (the
scanned one and the next one to the right),
and then go to the state s.

Construction

• To do this, we pick two unused symbols p,q and
add to Q the states [q,X] and [p,X], for each X ∈
Γ. We also add the transitions
δ(r,X) = ([q,X],X,R)
δ([q,X],Y) = ([p,Y],X,L)
δ([p,Y],X) = (s,Y,R)

• for all X,Y ∈ Γ .

• Check that we've achieved the desired effect:
• α rXY β |- α X[q,X]Y β |- α[p,Y]XX β |- α YX β

Example

• A TM for the language of palindromes can use
states of the form [q,a] (a ∈ Σ).

• Remembering the first symbol of the string, it
deletes it (puts B in its place), then moves to the
end of the input.

• Then it matches the last symbol against the
stored first symbol and, if the match succeeds, it
deletes the last symbol, and goes back to the
first non-blank symbol, and repeats.

	Turing Machine Variants
	Marking symbols
	An expanded alphabet
	Strategy
	Multiple Tracks
	Example
	Multi-Tape Turing Machines
	Slide Number 8
	Simulating Multitape TM's
	Slide Number 10
	Nondeterministic Turing Machines (NTM)
	Simulating NTM's
	Slide Number 13
	Slide Number 14
	TM can encode stateful storage
	Construction
	Example

