
Accepting Strings



Regular Languages

• A Regular Language is a set of Strings
• Two ways to describe sets of strings S

– Enumerate the strings:  S = {s1, s2, s3, …}
– Write a predicate – p:  p(x)=True if x is in the set S

• Problems
– Enumeration is hard if set is infinite
– Writing predicate varies depending upon how the 

set S is described (RegExp, DFA, NFA, etc)



Enumeration

• Enumeration is easy to write.
• For infinite Sets,  effective enumeration is only 

an approximation.

meaning:: Ord a => Int -> (RegExp a) -> Set [a]
meaning n (One x) = {x}
meaning n Lambda = {“”}
meaning n Empty = {}
meaning n (Union x y) = union (meaning n x) (meaning n y)
meaning n (Cat x y) = cat (meaning n x) (meaning n y)
meaning n (Star x) = starN n (meaning n x)



Approximating Star
starN 0 x = {””}
starN 1 x = x
starN n x = 

union {””}
(union x 

(cat x 
(starN (n-1) x)))



Approximate acceptance of RegExp

accept:: Ord a => [a] -> RegExp a -> Bool
accept s r = setElem s (meaning 3 r)



Equivalences and translation

• Since we know that DFA, NFA, NFAe, GenNFA, 
and RegExp all  describe the same languages,

• And, we have algorithms that translate 
between them,

• We can translate to one and use algorithms 
for that one.

• Which description has the most direct 
acceptance algorithm?
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data DFA q s = 
DFA { states :: [q],

symbols :: [s],
delta :: q -> s -> q,
start :: q,
final :: [q]} data NFA q s = 

NFA { states :: [q],
symbols :: [s],
delta :: q -> s -> [q],
start :: q,
final :: [q]}

data NFAe q s = 
NFAe { states :: [q],

symbols :: [s],
delta :: q -> Maybe s -> [q],
start :: q,
final :: [q]}

data RegExp a
= Lambda          
| Empty                        
| One a   
| Union (RegExp a) (RegExp a) 
| Cat (RegExp a) (RegExp a) 
| Star (RegExp a)

data GNFA q s = 
GNFA { states :: [q],

symbols :: [s],
delta :: q -> q -> RegExp s,
start :: q,
final :: q }



DFA Acceptance
data DFA q s = DFA { states :: [q],

symbols :: [s],
delta :: q -> s -> q,
start :: q,
final :: [q]}

trans :: (q -> s -> q) -> q -> [s] -> q
trans d q [] = q
trans d q (s:ss) = trans d (d q s) ss

accept :: (Eq q) => DFA q s -> [s] -> Bool
accept m@(DFA {delta = d, start = q0, final = f}) w = elem (trans d q0 w) f

This is δ



Costs of translation

• Whats the cost of translating from one 
specification form (RegExp, DFA, NFA, etc.) to 
another specification form.
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Exact RegExp Acceptance

• We can write an exact RegExp acceptance function.
• It depends upon two functions of  RegExp

emptyString:: RegExp sigma -> Bool
– Can the input accept the empty string?

derivative:: RegExp s -> s -> RegExp s
– If  a RegExp can accept a string that starts with s, then 

what regular expression would accept everything but s?



Derivative

• if    “abd…”    element of  the set denoted by R
• Then what regular expression R’ has the 

property that
• “bc…” element the set denoted by R’

• We call R’ the derivative of R with respect to 
‘a’



string reg-exp derivative

"xabbc“ x(a+d)b*c (a+d)b*c
"abbc“ (a+d)b*c b*c
"bbc“ b*c b*c
"bc" b*c b*c
"c“ b*c Λ



emptystring

emptyString:: RegExp a -> Bool
emptyString Lambda = True
emptyString Empty = False
emptyString (One a) = False
emptyString (Union x y) = emptyString x || emptyString y
emptyString (Star _) = True
emptyString (Cat x y) = emptyString x && emptyString y



derivative
deriv :: Ord a => RegExp a -> a -> RegExp a 
deriv (One a) b | a==b = Lambda
deriv (One a) b = Empty
deriv Empty a = Empty
deriv Lambda a = Empty
deriv (Cat x y) a | not(emptyString x) = Cat (deriv x a) y
deriv (Cat x y) a = 

Union (catOpt (deriv x a) y)  (deriv y a)
deriv (Union x y) a = Union (deriv x a) (deriv y a)
deriv (Star x) a = Cat (deriv x a) (Star x)



Exact Acceptance

recog:: [a] -> RegExp a -> Bool

recog s Empty = False
recog [] r = emptyString r
recog (x:xs) r = recog xs (deriv r x) 
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