
Bottom up Parsing
• Bottom up parsing trys to transform the input string into 

the start symbol.
• Moves through a sequence of sentential forms (sequence 

of Nonterminal or terminals). Trys to identify some 
substring of the sentential form that is the rhs of some 
production.

• E ->  E + E      |      E * E      |      x
• x + x * x
• E + x * x
• E + E * x
• E * x
• E * E
• E

The substring (shown in color and italics) 
for each step)  may contain both terminal 
and non-terminal symbols. This string is 
the rhs of some production, and is often 

called a handle.



Bottom Up Parsing
Implemented by Shift-Reduce parsing

• data structures: input-string and stack.

• look at symbols on top of stack, and the input-string and decide:

– shift (move first input to stack) 

– reduce (replace top n symbols on stack by a non-terminal)

– accept (declare victory) 

– error (be gracious in defeat)



Example Bottom up Parse
Consider the grammar: (note: left recursion is NOT a problem, 

but the grammar is still layered to prevent ambiguity)

1. E ::= E + T  
2. E ::= T
3. T ::= T * F  
4. T ::= F
5. F ::= ( E )  
6. F ::= id

stack        Input         Action

x + y          shift
x               + y            reduce 6
F               + y            reduce 4
T               + y            reduce 2
E               + y            shift
E +             y              shift
E + y                          reduce 6
E + F                          reduce 4
E + T                          reduce 1
E                                accept

The concatenation of the stack and the input is a sentential form. The input 
is all terminal symbols, the stack is a combination of terminal and non-
terminal symbols



LR(k)

• Grammars which can decide whether to shift 
or reduce by looking at only k symbols of the 
input are called LR(k). 
– Note the symbols on the stack don’t count when 

calculating k

• L is for a Left-to-Right scan of the input

• R is for the Reverse of a Rightmost derivation



Problems (ambiguous  grammars)

1) shift reduce conflicts:      stack        Input             Action
x + y        + z                ?

stack                 Input        Action
if x t if y t s2      e s3         ?

2) reduce reduce conflicts:
suppose both procedure  call and array reference have similar syntax:

– x(2)  := 6
– f(x)

stack            Input      Action
id ( id ) id         ?

Should id reduce to a parameter or an expression. Depends on whether the bottom most 
id is an array or a procedure.



Using ambiguity to your advantage

• Shift-Reduce and Reduce-Reduce errors are caused by ambiguous 
grammars.

• We can use resolution mechanisms to our advantage. Use an 
ambiguous grammar (smaller more concise, more natural parse 
trees) but resolve ambiguity using rules.

• Operator Precedence
– Every operator is given a precedence
– Precedence of the operator closest to the top of the stack and the 

precedence of operator next on the input decide shift or reduce.
– Sometimes the precedence is the same. Need more information: 

Associativity information.



Example Precedence Parser
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input :   x * x + y
stack                Input             Action
$ E * E              + y  $             reduce!
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Precedence parsers
• Precedence parsers have limitations

• No production can have two consecutive non-terminals

• Parse only a small subset of the Context Free Grammars

• Need a more robust version of shift- reduce parsing.

• LR - parsers
– State based  - finite  state  automatons (w / stack)
– Accept the widest range of grammars
– Easily constructed  (by a machine)
– Can be modified to accept ambiguous  grammars by using precedence and associativity information.



LR Parsers
• Table Driven Parsers
• Table is indexed by state and symbols  (both term and non-term)
• Table has two components.

– ACTION   part
– GOTO  part

state
terminals non-terminals

0
1

2

id    +      *      (       )      $ E    T    F

shift (state = 5)

reduce(prod = 12)
goto(state = 2)

ACTION GOTO



LR Table encodes FSA
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E -> E + T   |  T

T -> T * F   |  F

F -> ( E )   |  id

transition on terminal is a
shift in action table, on 
nonterminal is a goto entry



Table vs FSA
• The Table encodes the FSA

• The action part encodes
– Transitions  on  terminal  symbols (shift)
– Finding the end of a production  (reduce)

• The goto part encodes
– Tracing  backwards the symbols on the RHS
– Transition  on non-terminal, the LHS

• Tables can be quite compact



LR Table
state

terminals non-terminals

0
1

2
3

4
5

6
7

8

9

10

11

id + * ( ) $ E T F

s5 s4 1 2 3

s6 acc

r2 s7 r2 r2
r4 r4 r4r4

s5 s4 8 2 3
r6 r6 r6 r6

s5 s4 9 3

s5 s4 10

s6 s11

r1 s7 r1 r1

r3 r3 r3 r3

r5 r5 r5 r5



Reduce Action

• If the top of the stack is the rhs for some production n
• And the current action is “reduce n”
• We pop the rhs, then look at the state on the top of the stack, and index 

the goto-table with this state and the LHS non-terminal.
• Then push the lhs onto the stack in the new s found in the goto-table.

(?,0)(id,5)                * id + id $

Where:                   Action(5,*) = reduce 6
Production 6 is:    F ::= id
And:                       GOTO(0,F) = 3

(?,0)(F,3)                 * id + id $



Example ParseStack                                           Input
(?,0)                   id * id + id $
(?,0)(id,5)             * id + id $
(?,0)(F,3)              * id + id $
(?,0)(T,2)              * id + id $
(?,0)(T,2)(*,7)         id + id $
(?,0)(T,2)(*,7)(id,5)   + id $
(?,0)(T,2)(*,7)(F,10)   + id $
(?,0)(T,2)              + id $
(?,0)(E,1)              + id $
(?,0)(E,1)(+,6)         id $
(?,0)(E,1)(+,6)(id,5)   $
(?,0)(E,1)(+,6)(F,3)    $
(?,0)(E,1)(+,6)(T,9)    $
(?,0)(E,1)              $

1) E -> E + T       
2) E -> T
3) T -> T * F        
4) T -> F
5) F -> ( E )        
6) F -> id



Review

• Bottom up parsing transforms the input into the 
start symbol.

• Bottom up parsing looks for the rhs of some 
production in the partially transformed 
intermediate result

• Bottom up parsing is OK with left recursive 
grammars

• Ambiguity can be used to your advantage in 
bottom up partsing.

• The LR(k) languages = LR(1) languages = CFL
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