
Bottom up Parsing
• Bottom up parsing trys to transform the input string into

the start symbol.
• Moves through a sequence of sentential forms (sequence

of Nonterminal or terminals). Trys to identify some
substring of the sentential form that is the rhs of some
production.

• E -> E + E | E * E | x
• x + x * x
• E + x * x
• E + E * x
• E * x
• E * E
• E

The substring (shown in color and italics)
for each step) may contain both terminal
and non-terminal symbols. This string is
the rhs of some production, and is often

called a handle.

Bottom Up Parsing
Implemented by Shift-Reduce parsing

• data structures: input-string and stack.

• look at symbols on top of stack, and the input-string and decide:

– shift (move first input to stack)

– reduce (replace top n symbols on stack by a non-terminal)

– accept (declare victory)

– error (be gracious in defeat)

Example Bottom up Parse
Consider the grammar: (note: left recursion is NOT a problem,

but the grammar is still layered to prevent ambiguity)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

stack Input Action

x + y shift
x + y reduce 6
F + y reduce 4
T + y reduce 2
E + y shift
E + y shift
E + y reduce 6
E + F reduce 4
E + T reduce 1
E accept

The concatenation of the stack and the input is a sentential form. The input
is all terminal symbols, the stack is a combination of terminal and non-
terminal symbols

LR(k)

• Grammars which can decide whether to shift
or reduce by looking at only k symbols of the
input are called LR(k).
– Note the symbols on the stack don’t count when

calculating k

• L is for a Left-to-Right scan of the input

• R is for the Reverse of a Rightmost derivation

Problems (ambiguous grammars)

1) shift reduce conflicts: stack Input Action
x + y + z ?

stack Input Action
if x t if y t s2 e s3 ?

2) reduce reduce conflicts:
suppose both procedure call and array reference have similar syntax:

– x(2) := 6
– f(x)

stack Input Action
id (id) id ?

Should id reduce to a parameter or an expression. Depends on whether the bottom most
id is an array or a procedure.

Using ambiguity to your advantage

• Shift-Reduce and Reduce-Reduce errors are caused by ambiguous
grammars.

• We can use resolution mechanisms to our advantage. Use an
ambiguous grammar (smaller more concise, more natural parse
trees) but resolve ambiguity using rules.

• Operator Precedence
– Every operator is given a precedence
– Precedence of the operator closest to the top of the stack and the

precedence of operator next on the input decide shift or reduce.
– Sometimes the precedence is the same. Need more information:

Associativity information.

Example Precedence Parser

+
* (

)

id $+

*(

)

id
$

< : < :
< :

< :
< : < :

< : < : < : < :

< : < : < : < :

: > : > : >
: > : > : >

: >: > : > : >
: >: > : > : >

=

input : x * x + y
stack Input Action
$ E * E + y $ reduce!

topmost
terminal

next input

accept

Precedence parsers
• Precedence parsers have limitations

• No production can have two consecutive non-terminals

• Parse only a small subset of the Context Free Grammars

• Need a more robust version of shift- reduce parsing.

• LR - parsers
– State based - finite state automatons (w / stack)
– Accept the widest range of grammars
– Easily constructed (by a machine)
– Can be modified to accept ambiguous grammars by using precedence and associativity information.

LR Parsers
• Table Driven Parsers
• Table is indexed by state and symbols (both term and non-term)
• Table has two components.

– ACTION part
– GOTO part

state
terminals non-terminals

0
1

2

id + * () $ E T F

shift (state = 5)

reduce(prod = 12)
goto(state = 2)

ACTION GOTO

LR Table encodes FSA

0

1

2

3

4

5

6

7

8

9

10

11

(

T

E

)

F

*id

(

*

+(
F

id

id

F

F

id

E

(

T

+ T

E -> E + T | T

T -> T * F | F

F -> (E) | id

transition on terminal is a
shift in action table, on
nonterminal is a goto entry

Table vs FSA
• The Table encodes the FSA

• The action part encodes
– Transitions on terminal symbols (shift)
– Finding the end of a production (reduce)

• The goto part encodes
– Tracing backwards the symbols on the RHS
– Transition on non-terminal, the LHS

• Tables can be quite compact

LR Table
state

terminals non-terminals

0
1

2
3

4
5

6
7

8

9

10

11

id + * () $ E T F

s5 s4 1 2 3

s6 acc

r2 s7 r2 r2
r4 r4 r4r4

s5 s4 8 2 3
r6 r6 r6 r6

s5 s4 9 3

s5 s4 10

s6 s11

r1 s7 r1 r1

r3 r3 r3 r3

r5 r5 r5 r5

Reduce Action

• If the top of the stack is the rhs for some production n
• And the current action is “reduce n”
• We pop the rhs, then look at the state on the top of the stack, and index

the goto-table with this state and the LHS non-terminal.
• Then push the lhs onto the stack in the new s found in the goto-table.

(?,0)(id,5) * id + id $

Where: Action(5,*) = reduce 6
Production 6 is: F ::= id
And: GOTO(0,F) = 3

(?,0)(F,3) * id + id $

Example ParseStack Input
(?,0) id * id + id $
(?,0)(id,5) * id + id $
(?,0)(F,3) * id + id $
(?,0)(T,2) * id + id $
(?,0)(T,2)(*,7) id + id $
(?,0)(T,2)(*,7)(id,5) + id $
(?,0)(T,2)(*,7)(F,10) + id $
(?,0)(T,2) + id $
(?,0)(E,1) + id $
(?,0)(E,1)(+,6) id $
(?,0)(E,1)(+,6)(id,5) $
(?,0)(E,1)(+,6)(F,3) $
(?,0)(E,1)(+,6)(T,9) $
(?,0)(E,1) $

1) E -> E + T
2) E -> T
3) T -> T * F
4) T -> F
5) F -> (E)
6) F -> id

Review

• Bottom up parsing transforms the input into the
start symbol.

• Bottom up parsing looks for the rhs of some
production in the partially transformed
intermediate result

• Bottom up parsing is OK with left recursive
grammars

• Ambiguity can be used to your advantage in
bottom up partsing.

• The LR(k) languages = LR(1) languages = CFL

	Bottom up Parsing
	Bottom Up Parsing
	Example Bottom up Parse
	LR(k)
	Problems (ambiguous grammars)
	Using ambiguity to your advantage
	Example Precedence Parser
	Precedence parsers
	LR Parsers
	LR Table encodes FSA
	Table vs FSA
	LR Table
	Reduce Action
	Example Parse
	Review

