
• Grammar - quaduple
– A set of tokens (terminals): T
– A set of non-terminals: N
– A set of productions { lhs -> rhs , ... }

• lhs in N
• rhs is a sequence of N U T

– A Start symbol: S (in N)

• Shorthands
– Provide only the productions

• All lhs symbols comprise N
• All other sysmbols comprise T
• lhs of first production is S

Context Free Grammar – Quick Review

Using Grammars to derive Strings

• Rewriting rules
– Pick a non-terminal to replace. Which order?

• left-to-right
• right-to-left

• Derives relation: αAγ ⇒ αβχ
– When A -> β is a production

• Derivations (a list if productions used to derive a string from a grammar).

• A sentence of G: L(G)
– Start with S
– S ⇒∗ w where w is only terminal symbols
– all strings of terminals derivable from S in 1 or more steps

CF Grammar Terms
• Parse trees.

– Graphical representations of derivations.
– The leaves of a parse tree for a fully filled out tree is a sentence.

• Regular language v.s. Context Free Languages
– how do CFL compare to regular expressions?
– Nesting (matched ()’s) requires CFG,’s RE's are not powerful enough.

• Ambiguity
– A string has two derivations
– E -> E + E | E * E | id

• x + x * y

• Left-recursion
– E -> E + E | E * E | id
– Makes certain top-down parsers loop

Parsing

• Act of constructing derivations (or parse trees)
from an input string that is derivable from a
grammar.

• Two general algorithms for parsing
– Top down - Start with the start symbol and expand

Non-terminals by looking at the input
• Use a production on a left-to-right manner

– Bottom up - replace sentential forms with a non-
terminal

• Use a production in a right-to-left manner

Top Down Parsing

• Begin with the start symbol and try and derive the parse
tree from the root.

• Consider the grammar
1. Exp -> Id | Exp + Exp | Exp * Exp | (Exp)
2. Id -> x | y

Some strings derivable from the grammar
x

x+x
x+x+x,
x * y
x + y * z ...

Example Parse (top down)
– stack input

Exp x + y * z

Exp x + y * z
/ | \

Exp + Exp

Exp y * z
/ | \

Exp + Exp
|

id(x)

Top Down Parse (cont)

Exp y * z
/ | \

Exp + Exp
| / | \

id(x) Exp * Exp

Exp z
/ | \

Exp + Exp
| / | \

id(x) Exp * Exp
|

id(y)

Top Down Parse (cont.)

Exp
/ | \

Exp + Exp
| / | \

id(x) Exp * Exp
| |
id(y) id(z)

Problems with Top Down Parsing
• Backtracking may be necessary:

– S ::= ee | bAc | bAe
– A ::= d | cA
try on string “bcde”

• Infinite loops possible from (indirect) left recursive
grammars.
– E ::= E + id | id

• Ambiguity is a problem when a unique parse is not
possible.

• These often require extensive grammar restructuring
(grammar debugging).

Grammar Transformations

• Backtracking and Factoring

• Removing ambiguity.
– Simple grammars are often easy to write, but might be

ambiguous.

• Removing Left Recursion

Backtracking and Factoring

• Backtracking may be necessary:
S -> ee | bAc | bAe
A -> d | cA

• try on string “bcde”
S -> bAc (by S -> bAc)

-> bcAc (by A -> cA)

-> bcdc (by A -> d)

• But now we are stuck, we need to backtrack to
– S -> bAc
– And then apply the production (S -> bAe)

• Factoring a grammar
– Factor common prefixes and make the different postfixes into a new non-

terminal
S -> ee | bAQ
Q -> c | e
A -> d | cA

Removing ambiguity.
• Adding levels to a grammar
E -> E + E | E * E | id | (E)

Transform to an equivalent grammar

E -> E + T | T
T -> T * F | F
F -> id | (E)

Levels make formal the notion of precedence. Operators
that bind “tightly” are on the lowest levels

The dangling else grammar.

• st -> if exp then st else st
| if exp then st
| id := exp

• Note that the following has two possible parses
if x=2 then if x=3 then y:=2 else y := 4

if x=2 then (if x=3 then y:=2) else y := 4
if x=2 then (if x=3 then y:=2 else y := 4)

Adding levels (cont)

• Original grammar
st ::= if exp then st else st

| if exp then st
| id := exp

• Assume that every st between then and else must be matched, i.e.
it must have both a then and an else.

• New Grammar with addtional levels

st -> match | unmatch
match -> if exp then match else match

| id := exp
unmatch -> if exp then st

| if exp then match else unmatch

Top Down Recursive Descent Parsers

• One function (procedure) per non-terminal
• Functions call each other in a mutually

recursive way.
• Each function “consumes” the appropriate

input.
• If the input has been completely consumed

when the function corresponding to the start
symbol is finished, the input is parsed.

Example Recursive Descent Parser
E -> T + E | T
T -> F * T | F
F -> x | (E)

expr =
do { term

; iff (match '+') expr }

term =
do { factor

; iff (match '*') term }

factor =
pCase
['x' :=> return ()
, '(' :=> do { expr; match ')'; return ()}
]

Removing Left Recursion

• Top down recursive descent parsers require non-left recursive
grammars

• Technique: Left Factoring
E -> E + E | E * E | id

E -> id E’

E’ -> + E E’

| * E E’

| Λ

General Technique to remove direct left recursion

• Every Non terminal with productions
T -> T n | T m (left recursive productions)

| a | b (non-left recursive productions)

• Make a new non-terminal T’
• Remove the old productions
• Add the following productions

T -> a T’ | b T’

T’ -> n T’ | m T’ | Λ

T

T n

T n

T n

a

(a | b) (n | m) *

“a” and “b” because they are
the rhs of the non-left
recurive productions.

Recursive Descent Parsing

• One procedure (function) for each non-terminal.

• Procedures are often (mutually) recursive.

• They can return a bool (the input matches that
non-terminal) or more often they return a data-
structure (the input builds this parse tree)

• Need to control the lexical analyzer (requiring it
to “back-up” on occasion)

A grammar suitable for Recursive
Descent parsers for Regular Expresions
• Build an instance of the datatype:

data RegExp a

= Lambda -- the empty string ""

| Empty -- the empty set

| One a -- a singleton set {a}

| Union (RegExp a) (RegExp a) -- union of two RegExp

| Cat (RegExp a) (RegExp a) -- Concatenation

| Star (RegExp a) -- Kleene closure

Ambiguous grammar

RE -> RE bar RE
RE -> RE RE
RE -> RE *
RE -> id
RE -> ^
RE -> (RE)

Alt -> Alt bar Concat

Alt -> Concat

Concat -> Concat Closure

Concat -> Closure

Closure -> simple star

Closure -> simple

simple -> id | (Alt) | ^

•Transform grammar by layering

•Tightest binding operators (*) at
the lowest layer

•Layers are Alt, then Concat, then
Closure, then Simple.

Left Recursive GrammarAlt -> Alt bar Concat

Alt -> Concat

Concat -> Concat Closure

Concat -> Closure

Closure -> simple star

Closure -> simple

simple -> id | (Alt) | ^

Alt -> Concat moreAlt
moreAlt -> Bar Concat moreAlt

| Λ
Concat -> Closure moreConcat
moreConcat -> Closure moreConcat

| Λ
Closure -> Simple Star

| Simple
Simple -> Id

| (Alt)
| ^

For every Non terminal with productions
T ::= T n | T m (left recursive prods)

| a | b (non-left recursive prods)

Make a new non-terminal T’

Remove the old productions

Add the following productions
T ::= a T’ | b T’
T’ ::= n T’ | m T’ | Λ

Predictive Parsers

• Using a stack to avoid recursion. Encoding the diagrams in a table
• The Nullable, First, and Follow functions

– Nullable: Can a symbol derive the empty string. False for every
terminal symbol.

– First: all the terminals that a non-terminal could possibly derive as its
first symbol.

• term or nonterm -> set(term)
• sequence(term + nonterm) -> set(term)

– Follow: all the terminals that could immediately follow the string
derived from a non-terminal.

• non-term -> set(term)

Example First and Follow Sets

E -> T E' $
E' -> + T E'
E’ -> Λ
T -> F T'
T' -> * F T'
T’ -> Λ
F -> (E)
F -> id

First E = { "(", "id"} Follow E = {")","$"}
First F = { "(", "id"} Follow F = {"+","*",”)”,"$"}
First T = { "(", "id"} Follow T = {{"+",")","$"}
First E' = { "+", ε} Follow E' = {")","$"}
First T' = { "*", ε} Follow T' = {"+",")","$"}

• First of a terminal is itself.
• First can be extended to sequence of symbols.

Nullable

• if Λ is in First(symbol) then that symbol is
nullable.

• Sometime rather than let Λ be a symbol we
derive an additional function nullable.

• Nullable (E’) = true
• Nullable(T’) = true
• Nullable for all other symbols is false

E -> T E' $
E' -> + T E'
E’ -> Λ
T -> F T'
T' -> * F T'
T’ -> Λ
F -> (E)
F -> id

Computing First• Use the following rules until no more
terminals can be added to any FIRST set.

1) if X is a term. FIRST(X) = {X}
2) if X -> Λ is a production then add Λ to

FIRST(X), (Or set nullable of X to true).
3) if X is a non-term and

– X -> Y1 Y2 ... Yk
– add a to FIRST(X)

• if a in FIRST(Yi) and
• for all j<i Λ in FIRST(Yj)

• E.g.. if Y1 can derive Λ then if a is in
FIRST(Y2) it is surely in FIRST(X) as well.

Example First Computation

• Terminals
– First($) = {$}, First(*) = {*}, First(+) = {+}, ...

• Empty Productions
– add Λ to First(E’), add Λ to First(T’)

• Other NonTerminals
– Computing from the lowest layer (F) up

• First(F) = {id , (}
• First(T’) = { Λ, * }
• First(T) = First(F) = {id, (}
• First(E’) = { Λ, + }
• First(E) = First(T) = {id, (}

E -> T E' $
E' -> + T E'
E’ -> Λ
T -> F T'
T' -> * F T'
T’ -> Λ
F -> (E)
F -> id

Computing Follow
• Use the following rules until nothing can be added to

any follow set.

1) Place $ (the end of input marker) in FOLLOW(S) where
S is the start symbol.

2) If A -> a B b
then everything in FIRST(b) except Λ is in FOLLOW(B)

3) If there is a production A -> a B
or A -> a B b where FIRST(b)
contains Λ (i.e. b can derive the empty string) then
everything in FOLLOW(A) is in FOLLOW(B)

Ex. Follow Computation
• Rule 1, Start symbol

– Add $ to Follow(E)
• Rule 2, Productions with embedded nonterms

– Add First()) = {) } to follow(E)
– Add First($) = { $ } to Follow(E’)
– Add First(E’) = {+, Λ } to Follow(T)
– Add First(T’) = {*, Λ} to Follow(F)

• Rule 3, Nonterm in last position
– Add follow(E’) to follow(E’) (doesn’t do much)
– Add follow (T) to follow(T’)
– Add follow(T) to follow(F) since T’ --> Λ
– Add follow(T’) to follow(F) since T’ --> Λ

E -> T E' $
E' -> + T E'
E’ -> Λ
T -> F T'
T' -> * F T'
T’ -> Λ
F -> (E)
F -> id

1. For each production A -> alpha do 2 & 3
2. For each a in First alpha do add A -> alpha to M[A,a]
3. if ε is in First alpha, add A -> alpha to M[A,b] for each terminal b in Follow

A. If ε is in First alpha and $ is in Follow A add A -> alpha to M[A,$].

First E = {"(","id"} Follow E = {")","$"}
First F = {"(","id"} Follow F = {"+","*",”)”,"$"}
First T = {"(","id"} Follow T = {{"+",")","$"}
First E' = {"+",ε} Follow E' = {")","$"}
First T' = {"*",ε} Follow T' = {"+",")","$"}

Table from First and Follow

M[A,t] terminals
+ *) (id $

n
o
n
t
e
r
m
s

1
2 3

4 4
6 5 6

7 8

E
E’
T
T’
F

1
3

6

1. E -> T E' $
2. E' -> + T E'
3. E’ -> Λ
4. T -> F T'
5. T' -> * F T'
6. T’ -> Λ
7. F -> (E)
8. F -> id

Predictive Parsing Table

E

E’

T

T’

F

id + * () $

T E’ T E’

+ T E’ ε ε

F T’ F T’

ε * F T’ ε ε

id (E)

Table Driven Algorithm
push start symbol

Repeat

begin

let X top of stack, A next input

if terminal(X)

then if X=A

then pop X; remove A

else error()

else (* nonterminal(X) *)

begin

if M[X,A] = Y1 Y2 ... Yk

then pop X;

push Yk YK-1 ... Y1

else error()

end

until stack is empty, input = $

Example Parse

Stack Input

E x + y $

E’ T x + y $

E’ T’ F x + y $

E’ T’ id x + y $

E’ T’ + y $

E’ + y $

E’ T + + y $

E’ T y $

E’ T’ F y $

E’ T’ id y $

E’ T’ $

E’ $

$

E

E’

T

T’

F

id + * () $

T E’ T E’

+ T E’ ε ε

F T’ F T’

ε * F T’ ε ε

id (E)

	Slide Number 1
	Using Grammars to derive Strings
	CF Grammar Terms
	Parsing
	Top Down Parsing
	Example Parse (top down)
	Top Down Parse (cont)
	Top Down Parse (cont.)
	Problems with Top Down Parsing
	Grammar Transformations
	Backtracking and Factoring
	Removing ambiguity.
	The dangling else grammar.
	Adding levels (cont)
	Top Down Recursive Descent Parsers
	Example Recursive Descent Parser
	Removing Left Recursion
	General Technique to remove direct left recursion�
	Recursive Descent Parsing
	A grammar suitable for Recursive Descent parsers for Regular Expresions
	Ambiguous grammar
	Left Recursive Grammar
	Predictive Parsers
	Example First and Follow Sets
	Nullable
	Computing First
	Example First Computation
	Computing Follow
	Ex. Follow Computation
	Table from First and Follow
	Predictive Parsing Table
	Table Driven Algorithm
	Example Parse

