Context Free Grammar - Quick Review

- Grammar - quaduple
- A set of tokens (terminals): T
- A set of non-terminals: N
- A set of productions \{ Ihs -> rhs , ... \}
- Ihs in N
- rhs is a sequence of NUT
- A Start symbol: S (in N)
- Shorthands
- Provide only the productions
- All Ihs symbols comprise N
- All other sysmbols comprise T
- Ihs of first production is S

Using Grammars to derive Strings

- Rewriting rules
- Pick a non-terminal to replace. Which order?
- left-to-right
- right-to-left
- Derives relation: $\quad \alpha A \gamma \Rightarrow \alpha \beta \chi$
- When $A->\beta$ is a production
- Derivations (a list if productions used to derive a string from a grammar).
- A sentence of G: L(G)
- Start with S
- $S \Rightarrow^{*} w \quad$ where w is only terminal symbols
- all strings of terminals derivable from S in 1 or more steps

CF Grammar Terms

- Parse trees.
- Graphical representations of derivations.
- The leaves of a parse tree for a fully filled out tree is a sentence.
- Regular language v.s. Context Free Languages
- how do CFL compare to regular expressions?
- Nesting (matched ()'s) requires CFG,'s RE's are not powerful enough.
- Ambiguity
- A string has two derivations
- E-> E+E | E*E | id
- $x+x^{*} y$
- Left-recursion
- E-> E+E | E*E | id
- Makes certain top-down parsers loop

Parsing

- Act of constructing derivations (or parse trees) from an input string that is derivable from a grammar.
- Two general algorithms for parsing
- Top down - Start with the start symbol and expand Non-terminals by looking at the input
- Use a production on a left-to-right manner
- Bottom up - replace sentential forms with a nonterminal
- Use a production in a right-to-left manner

Top Down Parsing

- Begin with the start symbol and try and derive the parse tree from the root.
- Consider the grammar

1. Exp $->$ Id | Exp $+\operatorname{Exp}|\operatorname{Exp} * \operatorname{Exp}|(\operatorname{Exp})$
2. Id $->x \mid y$

Some strings derivable from the grammar
x
$x+x$
$x+x+x$,
$x^{*} y$
$x+y * z \quad .$.

Example Parse (top down)

- stack input
$\operatorname{Exp} \quad x+y * z$

Exp	$x+y^{*} z$
/ \| \	
Exp + Exp	

Top Down Parse (cont)

Top Down Parse (cont.)

$$
\begin{aligned}
& \text { Exp } \\
& \text { / | } \\
& \text { Exp + Exp } \\
& \text { | / | \ } \\
& \text { id(x) Exp * Exp } \\
& \text { | | } \\
& \text { id(y) id(z) }
\end{aligned}
$$

Problems with Top Down Parsing

- Backtracking may be necessary:
- S ::= ee | bAc | bAe
- A ::= d | cA
try on string "bcde"
- Infinite loops possible from (indirect) left recursive grammars.
- E::= E+id | id
- Ambiguity is a problem when a unique parse is not possible.
- These often require extensive grammar restructuring (grammar debugging).

Grammar Transformations

- Backtracking and Factoring
- Removing ambiguity.
- Simple grammars are often easy to write, but might be ambiguous.
- Removing Left Recursion

Backtracking and Factoring

- Backtracking may be necessary:

- try on string "bcde"

$$
\begin{aligned}
& \text { S -> bAc } \\
& \text { (by S -> bAc) } \\
& ->b c A c \quad \text { (by } A \rightarrow c a) \\
& \text {-> bcdc (by } A>d)
\end{aligned}
$$

- But now we are stuck, we need to backtrack to
- S -> bAc
- And then apply the production (S->bAe)
- Factoring a grammar
- Factor common prefixes and make the different postfixes into a new nonterminal

S	$->$	ee	$b A Q$
Q	$\rightarrow>$	c	e
$A->$	d	$c A$	

Removing ambiguity.

- Adding levels to a grammar
$E->E+E|E * E| i d \|(E)$

Transform to an equivalent grammar

E $\rightarrow E+T \mid T$
T -> T* $\mathrm{F} \mid \mathrm{F}$
F -> id | (E)

Levels make formal the notion of precedence. Operators that bind "tightly" are on the lowest levels

The dangling else grammar.

- st -> if exp then st else st if exp then st
id := exp
- Note that the following has two possible parses if $x=2$ then if $x=3$ then $y:=2$ else $y:=4$
if $\mathrm{x}=2$ then (if $\mathrm{x}=3$ then $\mathrm{y}:=2$) else $\mathrm{y}:=4$
if $\mathrm{x}=2$ then (if $\mathrm{x}=3$ then $\mathrm{y}:=2$ else $\mathrm{y}:=4$)

Adding levels (cont)

- Original grammar

$$
\begin{aligned}
& \text { st }::= \text { if } \exp \text { then st else st } \\
& \left\lvert\, \begin{array}{l}
\text { if } \exp \text { then st }
\end{array}\right. \\
& \text { id }:=\exp
\end{aligned}
$$

- Assume that every st between then and else must be matched, i.e. it must have both a then and an else.
- New Grammar with addtional levels

```
st -> match | unmatch
match -> if exp then match else match
    | id:= exp
unmatch -> if exp then st
    | if exp then match else unmatch
```


Top Down Recursive Descent Parsers

- One function (procedure) per non-terminal
- Functions call each other in a mutually recursive way.
- Each function "consumes" the appropriate input.
- If the input has been completely consumed when the function corresponding to the start symbol is finished, the input is parsed.

Example Recursive Descent Parser

```
E -> T+E|T
T -> F*T | F
F -> x|(E)
expr =
    do { term
        ; iff (match '+') expr }
term =
    do { factor
        ; iff (match '*') term }
factor =
        pCase
        [ 'x' :=> return ()
    , '(' :=> do { expr; match ')'; return ()}
    ]
```


Removing Left Recursion

- Top down recursive descent parsers require non-left recursive grammars
- Technique: Left Factoring

$$
\begin{aligned}
& E->E+E \mid E \text { | } E \mid \text { id } \\
& \text { E -> id E' } \\
& E^{\prime}->+E E^{\prime} \\
& \text { | * E E' } \\
& \mid \Lambda
\end{aligned}
$$

General Technique to remove direct left recursion

- Every Non terminal with productions

$$
\begin{aligned}
& \mathrm{T}->\mathrm{T} \mathrm{C} \mid \mathrm{T} \mathrm{~m} \quad \text { (left recursive productions) } \\
& \text { | a | b (non-left recursive productions) }
\end{aligned}
$$

- Make a new non-terminal T'
- Remove the old productions
- Add the following productions
"a" and "b" because they are the rhs of the non-left recurive productions.
(a|b) (n|m)*

T	$->$	a	T^{\prime}	\mid	b	T^{\prime}	
T^{\prime}	$->$	n	T^{\prime}	\mid	m	T^{\prime}	$\mid \Lambda$

Recursive Descent Parsing

- One procedure (function) for each non-terminal.
- Procedures are often (mutually) recursive.
- They can return a bool (the input matches that non-terminal) or more often they return a datastructure (the input builds this parse tree)
- Need to control the lexical analyzer (requiring it to "back-up" on occasion)

A grammar suitable for Recursive

 Descent parsers for Regular Expresions- Build an instance of the datatype:

```
data RegExp a
    = Lambda
    | Empty
    | One a
    | Union (RegExp a) (RegExp a)
    | Cat (RegExp a) (RegExp a)
    | Star (RegExp a)
```

-- the empty string
-- the empty set
-- a singleton set \{a\}
-- union of two RegExp
-- Concatenation
-- Kleene closure

Ambiguous grammar

RE -> RE bar RE RE -> RE RE
 RE -> RE *
 RE -> id
 RE -> ^
 RE -> (RE)

-Transform grammar by layering
-Tightest binding operators (*) at the lowest layer

- Layers are Alt, then Concat, then Closure, then Simple.

```
Alt -> Alt bar Concat
Alt -> Concat
Concat -> Concat Closure
Concat -> Closure
Closure -> simple star
Closure -> simple
simple -> id | ( Alt ) | ^
```

```
Alt -> Alt bar Concat
Alt -> Concat
Concat -> Concat Closure
Concat -> Closure
Closure -> simple star
Closure -> simple
simple -> id | (Alt ) | ^
```

Left Recursive Grammar
For every Non terminal with productions

$\mathrm{T}:$	$:=\mathrm{T} \mathrm{n}$	T m	(left recursive prods)
	a	a	b

Make a new non-terminal T^{\prime}

Remove the old productions
Add the following productions

$$
\begin{array}{cc|cc}
\mathrm{T}, & ::= & \mathrm{a} \mathrm{~T}^{\prime} \mid & \mathrm{b} \mathrm{~T}^{\prime} \\
\mathrm{T}^{\prime}: & :=\mathrm{n} \mathrm{~T}^{\prime} \mid & \mathrm{m} \mathrm{~T}^{\prime} \mid \Lambda
\end{array}
$$

Alt	$->$	Concat moreAlt
moreAlt	$->$	Bar Concat moreAlt
		Λ
Concat	$->$	Closure moreConcat
moreConcat	$->$	Closure moreConcat
	\mid	Λ
Closure	$->$	Simple Star
	\mid	Simple
Simple	$->$	Id
	\mid	$($ Alt $)$
	\mid	Λ

Predictive Parsers

- Using a stack to avoid recursion. Encoding the diagrams in a table
- The Nullable, First, and Follow functions
- Nullable: Can a symbol derive the empty string. False for every terminal symbol.
- First: all the terminals that a non-terminal could possibly derive as its first symbol.
- term or nonterm -> set(term)
- sequence(term + nonterm) -> set(term)
- Follow: all the terminals that could immediately follow the string derived from a non-terminal.
- non-term -> set(term)

Example First and Follow Sets


```
First E \(=\{\) "(", "id" \(\} \quad\) Follow E \(\left.=\{")^{\prime \prime}, " \$ "\right\}\)
First \(F=\{\) "(", "id" \(\} \quad\) Follow \(F=\{"+", " * ", "), " \$ "\}\)
First T \(=\{\) "(", "id" \(\} \quad\) Follow \(T=\{\{"+", ")\) ","\$"
First \(E^{\prime}=\{"+", \varepsilon\} \quad\) Follow \(\left.E^{\prime}=\{")^{\prime \prime}, " \$ "\right\}\)
First \(T^{\prime}=\{\) "*", \(\varepsilon\} \quad\) Follow \(\left.T^{\prime}=\{"+", ")^{\prime \prime}, " \$ "\right\}\)
```

- First of a terminal is itself.
- First can be extended to sequence of symbols.

Nullable

- if Λ is in First(symbol) then that symbol is nullable.
- Sometime rather than let Λ be a symbol we derive an additional function nullable.
- Nullable (E') = true
- Nullable(T^{\prime}) = true

$$
\begin{array}{|llll|}
\hline E & -> & T & E^{\prime} \\
E^{\prime}, & -> & + & \mathrm{T}^{\prime} \\
\mathrm{E}^{\prime} & -> & \Lambda & \\
T & -> & \mathrm{F} & \mathrm{~T}^{\prime} \\
\mathrm{T}^{\prime} & -> & \star & \mathrm{T}^{\prime} \\
\mathrm{T}^{\prime} & -> & \Lambda & \\
\mathrm{F} & -> & (\mathrm{E} & \\
\mathrm{F} & -> & \mathrm{Id} & \\
\hline
\end{array}
$$

- Nullable for all other symbols is false

Computing First

- Use the following rules untif no more terminals can be added to any FIRST set.

1) if X is a term. $\operatorname{FIRST}(X)=\{X\}$
2) if $X \rightarrow \Lambda$ is a production then add Λ to FIRST(X), (Or set nullable of X to true).
3) if X is a non-term and

- X -> Y1 Y2 ... Yk
- add a to FIRST(X)
- if a in FIRST(Yi) and
- for all j<i Λ in FIRST(Yj)
- E.g.. if Y 1 can derive Λ then if a is in FIRST(Y2) it is surely in FIRST(X) as well.

Example First Computation

- Terminals
$-\operatorname{First}(\$)=\{\$\}, \quad \operatorname{First}\left({ }^{*}\right)=\{*\}, \operatorname{First}(+)=\{+\}, \quad \ldots$
- Empty Productions
- add Λ to $\operatorname{First}\left(E^{\prime}\right)$, add Λ to $\operatorname{First}\left(T^{\prime}\right)$
- Other NonTerminals
- Computing from the lowest layer (F) up
- $\operatorname{First}(F)=\{i d,(\}$
- $\operatorname{First}\left(\mathrm{T}^{\prime}\right)=\{\Lambda, *\}$
- $\operatorname{First}(\mathrm{T})=\operatorname{First}(\mathrm{F})=\{\mathrm{id},(\}$
- First(E') $=\{\Lambda,+\}$
- $\operatorname{First}(E)=\operatorname{First}(\mathrm{T})=\{i d,(\}$

E'	->	T ${ }^{\text {E }}{ }^{\prime} \mathrm{E}^{\text {¢ }}$
\underline{E}^{\prime}	->	
T	->	$\mathrm{F}^{\prime} \mathrm{T}^{\prime}$
T^{\prime}	->	* F T'
T'	->	
F	->	id ${ }^{\text {E }}$

Computing Follow

- Use the following rules until nothing can be added to any follow set.

1) Place \$ (the end of input marker) in FOLLOW(S) where S is the start symbol.
2) If $A->a B b$ then everything in FIRST(b) except Λ is in FOLLOW(B)
3) If there is a production $\mathrm{A}->a \mathrm{~B}$ or $\mathrm{A}->a \mathrm{~B} b$ where $\operatorname{FIRST}(b)$ contains Λ (i.e. b can derive the empty string) then everything in FOLLOW(A) is in FOLLOW(B)

Ex. Follow Computation

- Rule 1, Start symbol
- Add \$ to Follow(E)
- Rule 2, Productions with embedded nonterms
- Add First()) = \{) \} to follow(E)
- Add First(\$) = \{\$\} to Follow(E')
- Add First(E') $=\{+, \Lambda\}$ to Follow(T)
- Add First(T') $=\left\{{ }^{*}, \Lambda\right\}$ to Follow(F)
- Rule 3, Nonterm in last position

E'	->	
\underline{E}^{\prime}	->	
T ${ }^{1}$	->	${ }_{*} \mathrm{~F}^{\prime} \mathrm{T}^{\prime}$
T'	->	Λ
F	->	(E)

- Add follow(E') to follow(E') (doesn't do much)
- Add follow (T) to follow(T')
- Add follow(T) to follow(F) since T^{\prime}--> Λ
- Add follow(T') to follow(F) since T^{\prime}--> Λ

Table from First and Follow

1. For each production $A->$ alpha do $2 \& 3$
2. For each a in First alpha do add $A->$ alpha to $M[A, a]$
3. if ε is in First alpha, add $A->$ alpha to $M[A, b]$ for each terminal b in Follow A. If ε is in First alpha and $\$$ is in Follow A add A-> alpha to $M[A, \$]$.
```
First E = {"(","id"} Follow E = {")","$"}
First F = {"(","id"} Follow F = {"+","*",")","$"}
First T = {"(","id"} Follow T = {{"+",")","$"}
First E' = {"+",\varepsilon} Follow E' = {")","$"}
First T' = {"*",\varepsilon} Follow T' = {"+",")","$"}
```


r
m

Predictive Parsing Table

	id	\pm	*	1	1	\$
E	T E'			T E'		
E'		+ T E'			ε	ε
T	F T'			F T'		
T'		ε	* F T'		ε	ε
F	id			(E)		

Table Driven Algorithm

```
push start symbol
Repeat
    begin
    let X top of stack, A next input
                if terminal(X)
                then if X=A
                then pop X; remove A
                else error()
                else (* nonterminal(X) *)
    begin
    if M[X,A] = Y1 Y2 ... Yk
            then pop X;
                        push Yk YK-1 ... Y1
            else error()
end
until stack is empty, input = $
```


Example Parse

Stack	Input
E	$\mathrm{x}+\mathrm{y}$ \$
E' T	$x+y$ \$
$\mathrm{E}^{\prime} \mathrm{T}^{\prime} \mathrm{F}$	$x+y$ \$
$\mathrm{E}^{\prime} \mathrm{T}^{\prime}$ id	$x+y$ \$
$E^{\prime} \mathrm{T}^{\prime}$	+ y \$
E'	+ y \$
E^{\prime} T +	+ y \$
$\mathrm{E}^{\prime} \mathrm{T}$	y \$
$\mathrm{E}^{\prime} \mathrm{T}^{\prime} \mathrm{F}$	y \$
$\mathrm{E}^{\prime} \mathrm{T}^{\prime}$ id	y \$
$E^{\prime} \mathrm{T}^{\prime}$	\$
E^{\prime}	\$
	\$

| | id | + | $*$ | 1 | 1 | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| E | $\mathrm{T} \mathrm{E}^{\prime}$ | | | TE | | |
| E^{\prime} | | $+\mathrm{T} \mathrm{E}^{\prime}$ | | | ε | ε |
| T | FT | | | FT^{\prime} | | |
| T^{\prime} | | ε | $* \mathrm{FT}^{\prime}$ | | ε | ε |
| F | id | | | (E) | | |
| | | | | | | |

