
• Grammar - quaduple
– A set of tokens (terminals): T
– A set of non-terminals: N
– A set of productions { lhs ->  rhs , ... }

• lhs in N
• rhs is a sequence of N U T

– A Start symbol: S (in N)

• Shorthands
– Provide only the productions

• All lhs symbols comprise N
• All other sysmbols comprise T
• lhs of first production is S

Context Free Grammar – Quick Review



Using Grammars to derive Strings

• Rewriting rules
– Pick a non-terminal to replace. Which order?

• left-to-right
• right-to-left

• Derives relation:       αAγ ⇒ αβχ
– When      A -> β      is a production

• Derivations (a list if productions used to derive a string from a grammar).

• A sentence of G:  L(G) 
– Start with S
– S ⇒∗ w where   w   is only terminal symbols
– all strings of terminals derivable from S in 1 or more steps



CF Grammar  Terms
• Parse trees.

– Graphical representations of derivations. 
– The leaves of a parse tree for a fully filled out tree is a sentence.

• Regular  language v.s. Context Free Languages
– how do CFL compare to regular expressions?
– Nesting (matched ()’s) requires CFG,’s RE's are not powerful enough.

• Ambiguity
– A string has two derivations
– E ->  E + E      |      E * E      |      id

• x + x * y

• Left-recursion
– E ->  E + E     |     E * E     |    id
– Makes certain top-down parsers loop



Parsing

• Act of constructing derivations (or parse trees) 
from an input string that is derivable from a 
grammar.

• Two general algorithms for parsing
– Top down   - Start with the start symbol and expand 

Non-terminals by looking at the input
• Use a production on a left-to-right manner

– Bottom up  - replace sentential forms with a non-
terminal

• Use a production in a right-to-left manner



Top Down Parsing

• Begin with the start symbol and try and derive the parse 
tree from the root.

• Consider the grammar
1. Exp -> Id  | Exp + Exp   | Exp * Exp  | ( Exp )
2. Id  -> x | y

Some strings derivable from the grammar
x

x+x
x+x+x,
x * y
x + y * z    ...



Example Parse (top down)
– stack        input

Exp               x + y * z

Exp               x + y * z
/    |   \

Exp   +  Exp

Exp              y * z
/    |  \

Exp  +  Exp
|

id(x)



Top Down Parse (cont)

Exp                 y * z
/   |   \

Exp  +    Exp
|           / | \

id(x)    Exp *  Exp

Exp                     z
/      |    \

Exp   +   Exp
|            /    |   \

id(x)     Exp *  Exp
|

id(y)



Top Down Parse (cont.)

Exp                     
/    |    \

Exp  +    Exp
|             /   |  \

id(x)    Exp *  Exp
|          |
id(y)     id(z)



Problems with Top Down Parsing
• Backtracking may be necessary:

– S ::=  ee |   bAc |   bAe
– A  ::=  d  |  cA
try on string   “bcde”

• Infinite loops possible from (indirect) left recursive 
grammars.
– E ::=  E + id  |  id

• Ambiguity is a problem when a unique parse is not 
possible.

• These often require extensive grammar restructuring 
(grammar debugging).



Grammar Transformations

• Backtracking and Factoring

• Removing ambiguity.
– Simple grammars are often easy to write, but might be 

ambiguous.

• Removing Left Recursion



Backtracking and Factoring

• Backtracking may be necessary:
S ->  ee |   bAc |   bAe
A ->  d  |  cA

• try on string   “bcde”
S -> bAc (by S -> bAc)

-> bcAc (by A -> cA)

-> bcdc (by A -> d)

• But now we are stuck,  we need to backtrack to
– S -> bAc
– And then apply the production (S -> bAe)

• Factoring a grammar
– Factor common prefixes and make the different postfixes into a new non-

terminal
S ->  ee |  bAQ
Q -> c    |  e
A ->  d   |  cA



Removing ambiguity.
• Adding levels to a grammar
E ->  E + E  |  E * E |  id | ( E )

Transform to an equivalent grammar

E  ->   E + T  |  T
T  ->   T * F  |  F
F ->  id  |  (  E  )

Levels make formal the notion of precedence. Operators 
that bind “tightly” are on the lowest levels



The dangling else grammar.

• st ->  if exp  then st else st
|  if exp then st
| id := exp

• Note that the following has two possible parses
if x=2 then if x=3 then y:=2 else y := 4

if x=2 then (if x=3 then y:=2 ) else y := 4
if x=2 then (if x=3 then y:=2 else y := 4)



Adding levels (cont)

• Original grammar
st ::=  if exp  then st  else st  

|  if exp then st
|  id := exp

• Assume that every st between then and else must be matched, i.e. 
it must have both a then and an else.

• New Grammar with addtional levels

st             ->    match  |   unmatch
match      ->   if exp  then match  else  match

|     id := exp
unmatch ->   if  exp  then  st

|     if  exp  then  match  else  unmatch



Top Down Recursive Descent Parsers

• One function (procedure) per non-terminal
• Functions call each other in a mutually 

recursive way.
• Each function “consumes” the appropriate 

input.
• If the input has been completely consumed 

when the function corresponding to the start 
symbol is finished, the input is parsed.



Example Recursive Descent Parser
E   ->   T + E |  T
T   ->   F * T  |  F
F   ->  x  |  (  E  )

expr = 
do { term

; iff (match '+') expr }

term = 
do { factor

; iff (match '*') term }

factor = 
pCase
[ 'x' :=> return ()
, '(' :=> do { expr; match ')'; return ()} 
]



Removing Left Recursion

• Top down recursive descent parsers require non-left recursive 
grammars

• Technique: Left Factoring
E -> E + E  |  E * E |  id

E ->  id E’

E’  ->  +  E  E’   

| *  E  E’    

| Λ



General Technique to remove direct left recursion

• Every Non terminal with productions
T  ->  T n  |  T m (left recursive productions)

|  a    |  b (non-left recursive productions)

• Make a new non-terminal T’
• Remove the old productions
• Add the following productions

T   ->   a T’  |  b T’

T’  ->   n  T’ |  m  T’ | Λ

T

T n

T n

T n

a

(a | b) (n | m) *

“a” and “b” because they are 
the rhs of the non-left 
recurive productions.



Recursive Descent Parsing

• One procedure (function) for each non-terminal.

• Procedures are often (mutually) recursive.

• They can return a bool (the input matches that 
non-terminal) or more often they return a data-
structure (the input builds this parse tree)

• Need to control the lexical analyzer  (requiring it 
to “back-up” on occasion)



A grammar suitable for Recursive 
Descent parsers for Regular Expresions
• Build an instance of the datatype:

data RegExp a

= Lambda                         -- the empty string ""

| Empty                          -- the empty set

| One a                          -- a singleton set {a}

| Union (RegExp a) (RegExp a)    -- union of two RegExp

| Cat (RegExp a) (RegExp a)      -- Concatenation

| Star (RegExp a)                -- Kleene closure



Ambiguous grammar

RE -> RE bar RE
RE -> RE RE
RE -> RE *
RE -> id
RE -> ^
RE -> ( RE )

Alt -> Alt bar Concat

Alt -> Concat

Concat -> Concat Closure

Concat -> Closure

Closure -> simple star

Closure -> simple

simple -> id  | ( Alt ) | ^

•Transform grammar by layering

•Tightest binding operators (*) at 
the lowest layer

•Layers are Alt, then Concat, then 
Closure, then Simple.



Left Recursive GrammarAlt -> Alt bar Concat

Alt -> Concat

Concat -> Concat Closure

Concat -> Closure

Closure -> simple star

Closure -> simple

simple -> id  |  (Alt )  | ^

Alt        ->  Concat moreAlt
moreAlt -> Bar Concat moreAlt

| Λ
Concat -> Closure moreConcat
moreConcat -> Closure moreConcat

| Λ
Closure    ->  Simple Star

|  Simple 
Simple     -> Id

| ( Alt )
| ^

For every Non terminal with productions
T ::= T n | T m (left recursive prods)

|  a  |  b (non-left recursive prods)

Make a new non-terminal T’

Remove the old productions

Add the following productions
T  ::=  a T’  |  b T’
T’ ::=  n  T’ |  m  T’ | Λ



Predictive Parsers

• Using a stack to avoid recursion. Encoding the diagrams in a table
• The Nullable, First, and Follow functions 

– Nullable: Can a symbol derive the empty string. False for every 
terminal symbol.

– First:  all the terminals that a non-terminal could possibly derive as its 
first symbol.

• term or nonterm -> set( term )
• sequence(term + nonterm) -> set( term)

– Follow: all the terminals that could immediately follow the string 
derived from a non-terminal.

• non-term -> set( term )



Example First and Follow Sets

E  ->  T E' $
E' ->  + T E' 
E’ ->  Λ
T  ->  F T'
T' ->  * F T'  
T’ ->  Λ
F  ->  ( E ) 
F  ->  id

First E  = { "(", "id"}      Follow E  =  {")","$"}
First F  = { "(", "id"}      Follow F  =  {"+","*",”)”,"$"}
First T  = { "(", "id"}      Follow T  =  {{"+",")","$"}
First E' = { "+", ε}          Follow E' =  {")","$"}
First T' = { "*", ε}           Follow T' =  {"+",")","$"}

• First of a terminal is itself.
• First can be extended to sequence of symbols.



Nullable

• if Λ is in First(symbol) then that symbol is 
nullable.

• Sometime rather than let Λ be a symbol we 
derive an additional function nullable.

• Nullable (E’) = true
• Nullable(T’) = true
• Nullable for all other symbols is false

E  ->  T E' $
E' ->  + T E' 
E’ ->  Λ
T  ->  F T'
T' ->  * F T'  
T’ ->  Λ
F  ->  ( E ) 
F  ->  id



Computing First• Use the following rules until no more 
terminals can be added to any FIRST set.

1) if X is a term. FIRST(X) = {X}
2) if X ->  Λ is  a production then add Λ to 

FIRST(X), (Or set nullable of X to true).
3) if X is a non-term and

– X ->  Y1  Y2  ... Yk
– add a to FIRST(X)

• if  a in FIRST(Yi) and
• for all j<i Λ in FIRST(Yj) 

• E.g..  if Y1 can derive Λ then  if a is in 
FIRST(Y2) it is surely in FIRST(X) as well.



Example First Computation

• Terminals
– First($) = {$},   First(*) = {*},  First(+) = {+},   ...

• Empty Productions
– add Λ to First(E’), add Λ to First(T’)

• Other NonTerminals
– Computing from the lowest layer (F) up

• First(F) = {id , ( }
• First(T’) = { Λ, * }
• First(T) = First(F) = {id, ( }
• First(E’) = { Λ, + }
• First(E) = First(T) = {id, ( }

E  ->  T E' $
E' ->  + T E' 
E’ ->  Λ
T  ->  F T'
T' ->  * F T'  
T’ ->  Λ
F  ->  ( E ) 
F  ->  id



Computing Follow
• Use the following rules until nothing can be added to 

any follow set.

1) Place $ (the end of input marker) in FOLLOW(S) where 
S is the start symbol.

2) If  A ->   a B b
then everything in FIRST(b) except Λ is in FOLLOW(B)

3) If there is a production A ->  a B
or A ->  a B b where FIRST(b)
contains Λ (i.e. b can derive the empty string) then 
everything in FOLLOW(A) is in FOLLOW(B)



Ex. Follow Computation
• Rule 1, Start symbol

– Add $ to Follow(E)
• Rule 2, Productions with embedded nonterms

– Add First( ) ) = { ) }  to follow(E)
– Add First($)  = { $ }  to Follow(E’)
– Add First(E’) = {+, Λ } to Follow(T)
– Add First(T’) = {*, Λ} to Follow(F)

• Rule 3, Nonterm in last position
– Add follow(E’) to follow(E’)     (doesn’t do much)
– Add follow (T) to follow(T’)
– Add follow(T) to follow(F)  since T’ --> Λ
– Add follow(T’) to follow(F) since T’ --> Λ

E  ->  T E' $
E' ->  + T E' 
E’ ->  Λ
T  ->  F T'
T' ->  * F T'  
T’ ->  Λ
F  ->  ( E ) 
F  ->  id



1. For each production A -> alpha do 2 & 3
2. For each a in First alpha do add A -> alpha to  M[A,a]
3. if ε is in First alpha, add A -> alpha to M[A,b] for each terminal b in Follow 

A. If ε is in First alpha  and $ is in Follow A add A -> alpha to M[A,$].

First E  = {"(","id"}      Follow E  =  {")","$"}
First F  = {"(","id"}      Follow F  =  {"+","*",”)”,"$"}
First T  = {"(","id"}      Follow T  =  {{"+",")","$"}
First E' = {"+",ε}          Follow E' =  {")","$"}
First T' = {"*",ε}           Follow T' =  {"+",")","$"}

Table from First and Follow

M[A,t] terminals
+    *      )  (    id     $

n
o
n
t
e
r
m
s

1
2 3

4 4
6 5 6

7 8

E
E’
T
T’
F

1
3

6

1. E  ->  T E' $
2. E' ->  + T E' 
3. E’ ->  Λ
4. T  ->  F T'
5. T' ->  * F T'  
6. T’ ->  Λ
7. F  ->  ( E ) 
8. F  ->  id



Predictive Parsing Table

E

E’

T

T’

F

id + * ( ) $

T E’ T E’

+ T E’ ε ε

F T’ F T’

ε *  F  T’ ε ε

id ( E )



Table Driven Algorithm 
push start symbol

Repeat

begin

let X top of stack, A next input

if terminal(X)

then if X=A

then pop X; remove A

else error()

else (* nonterminal(X) *)

begin

if M[X,A] = Y1 Y2 ... Yk

then pop X;

push Yk YK-1 ... Y1

else error()

end

until stack is empty, input = $



Example Parse

Stack                 Input

E                      x + y $ 

E’ T                   x + y  $

E’ T’ F                x + y $

E’ T’ id               x + y $

E’ T’                  + y $ 

E’                     + y $ 

E’ T +                 + y $

E’ T                   y $

E’ T’ F                y $

E’ T’ id               y $

E’ T’                  $

E’                     $

$

E

E’

T

T’

F

id + * ( ) $

T E’ T E’

+ T E’ ε ε

F T’ F T’

ε *  F  T’ ε ε

id ( E )
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