Deterministic Finite Automata (DFA)

- DFAs are easiest to present pictorially:

They are directed graphs whose nodes are states and whose arcs are labeled by one or more symbols from some alphabet Σ. Here Σ is $\{0,1\}$.

- One state is initial (denoted by a short incoming arrow), and several are final/accepting (denoted by a double circle). For every symbol $a \in \Sigma$ there is an arc labeled a emanating from every state.
-

- Automata are string processing devices. The arc from q_{1} to q_{2} labeled 0 shows that when the automaton is in the state q_{1} and receives the input symbol 0 , its next state will be q_{2}.
- Every path in the graph spells out a string over S. Moreover, for every string $w \in \Sigma^{*}$ there is a unique path in the graph labelled w. (Every string can be processed.) The set of all strings whose corresponding paths end in a final state is the language of the automaton.

- In our example, the language of the automaton consists of strings over $\{0,1\}$ containing at least two occurrences of 0 .
- Modify the automaton so that its language consists of strings containing exactly two occurrences of 0 .

Formal Definition

- A DFA is a quintuple $\mathbf{A}=(\mathbf{Q}, \Sigma, \mathbf{S}, \mathbf{F}, \delta)$, where
- Q is a set of states
$-\Sigma$ is the alphabet of input symbols
-s is an element of \mathbf{Q}--- the initial state
-F is a subset of \mathbf{Q}---the set of final states
$-\delta: \mathbf{Q} \times \Sigma \longrightarrow \mathbf{Q}$ is the transition function

Example

- In our example,
- $\mathbf{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$,

$$
\Sigma=\{0,1\},
$$

$$
\mathbf{s}=q_{0},
$$

$$
F=\left\{q_{2}\right\},
$$

δ is given by 6 equalities

- $\delta\left(q_{0}, 0\right)=q_{1}$,
- $\delta\left(q_{0}, 1\right)=q_{0}$,
- $\delta\left(q_{2}, 1\right)=q_{2}$

Transition Table

- All the information presenting a DFA can be given by a single thing -- its transition table:

- The initial and final states are denoted by \rightarrow and * respectively.

Extension of δ to Strings

- Given a state \mathbf{q} and a string \mathbf{w}, there is a unique path labeled \mathbf{w} that starts at \mathbf{q} (why?). The endpoint of that path is denoted $\underline{\delta}(q, w)$
- Formally, the function $\underline{\delta}: \mathrm{Q} \times \Sigma^{*} \rightarrow \mathrm{Q}$
- is defined recursively:
$-\underline{\delta}(q, \varepsilon)=q$
$-\underline{\delta}(q, u a)=\delta(\underline{\delta}(q, u), a)$
- Note that $\underline{\boldsymbol{\delta}}(\mathrm{q}, \mathrm{a})=\delta(\mathrm{q}, \mathrm{a})$ for every $\mathrm{a} \in \Sigma$;
- so $\underline{\delta}$ does extend δ.

Example trace

- Diagrams (when available) make it very easy to compute $\underline{\delta}(q, w)$--- just trace the path labeled w starting at q.
- E.g. trace 101 on the diagram below starting at

- Implementation and precise arguments need the formal definition.
- $\underline{\delta}\left(q_{1}, 101\right)=\delta\left(\underline{\delta}\left(q_{1}, 10\right), 1\right)$
$=\delta\left(\delta\left(\underline{\delta}\left(q_{1}, 1\right), 0\right), 1\right)$
$=\delta\left(\delta\left(\delta\left(q_{1}, 1\right), 0\right), 1\right)$
$=\delta\left(\delta\left(q_{1}, 0\right), 1\right)$
$=\delta\left(q_{2}, \mathbf{1}\right)$
$=q_{2}$

	0	1
$\rightarrow q_{0}$	q_{1}	q_{0}
q_{1}	q_{2}	q_{1}
${ }^{*} q_{2}$	q_{2}	q_{2}

Language of accepted strings

A DFA $=(\mathbf{Q}, \Sigma, \mathbf{s}, \mathbf{F}, \delta)$, accepts a string \mathbf{W} iff $\underline{\delta}(\mathbf{s}, \mathbf{W}) \in \mathbf{F}$

The language of the automaton A is

$$
L(A)=\{w \mid A \text { accepts } w\} .
$$

More formally
$L(A)=\{w \mid \underline{\delta}(\operatorname{Start}(A), w) \in \operatorname{Final}(A)\}$

Example:

Find a DFA whose language is the set of all strings over $\{a, b, c\}$ that contain aaa as a substring.

DFA's as Programs

data DFA q s = DFA \{ states :: [q], symbols :: [s], delta :: q -> s -> q, start : : q, final :: [q]\}

Transition function

trans :: (q -> $s->q)->q->[s]->q$ trans d q [] = q
trans d q (s:ss) = trans d (dqs) ss
accept : : (Eq q) $=>$ DFA q $s \rightarrow[s]->$ Bool accept
m@(DFA\{delta = d, start = q0,final =f\}) w
$=$ elem (trans d q0 w) f

An Example

ma $=$ DFA $\{$ states $=[0,1,2]$,
symbols $=[0,1]$, delta $=\backslash p$ a $->$
(2*p+a) `mod` 3,
start = 0,
final = [2]
\}

