Deterministic Finite Automata (DFA)

• DFAs are easiest to present pictorially:

They are directed graphs whose nodes are *states* and whose arcs are labeled by one or more symbols from some alphabet Σ . Here Σ is {0,1}. • One state is *initial* (denoted by a short incoming arrow), and several are *final/accepting* (denoted by a double circle). For every symbol $a \in \Sigma$ there is an arc labeled *a* emanating from every state.

Automata are string processing devices. The arc from q₁ to q₂ labeled 0 shows that when the automaton is in the state q₁ and receives the input symbol 0, its next state will be q₂.

• Every path in the graph spells out a string over S. Moreover, for every string $w \in \Sigma^*$ there is a unique path in the graph labelled w. (Every string can be processed.) The set of all strings whose corresponding paths end in a final state is the language of the automaton.

 In our example, the language of the automaton consists of strings over {0,1} containing at least two occurrences of 0. Modify the automaton so that its language consists of strings containing *exactly two* occurrences of 0.

Formal Definition

- A DFA is a quintuple $\mathbf{A} = (\mathbf{Q}, \Sigma, \mathbf{s}, \mathbf{F}, \delta)$, where
 - -Q is a set of states
 - $-\Sigma$ is the alphabet of input symbols
 - -s is an element of Q --- the *initial* state
 - -F is a subset of Q ---the set of final states
 - - $\delta: \mathbf{Q} \times \Sigma \longrightarrow \mathbf{Q}$ is the transition function

Example

- In our example,
- $\mathbf{Q} = \{ \mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2 \}$, $\mathbf{\Sigma} = \{ 0, 1 \}$, $\mathbf{s} = \mathbf{q}_0$, $\mathbf{F} = \{ \mathbf{q}_2 \}$,

and

•••

- $\delta~$ is given by 6 equalities
- $\delta(q_0, 0) = q_1$,
- $\delta(q_0, 1) = q_0$,
- $\delta(q_2, 1) = q_2$

Transition Table

• All the information presenting a DFA can be given by a single thing -- its *transition table*:

	0	1
O ₀	Q ₁	O ₀
\rightarrow Q ₁	Q ₂	Q ₁
*Q ₂	Q ₂	Q ₂

• The initial and final states are denoted by \rightarrow and * respectively.

Extension of δ to Strings

- Given a state q and a string w, there is a unique path labeled w that starts at q (why?). The endpoint of that path is denoted <u>δ</u>(q,w)
- Formally, the function $\underline{\delta}$: $\mathbf{Q} \times \Sigma^* \to \mathbf{Q}$
- is defined recursively:

$$-\underline{\delta}(q,\varepsilon) = q$$

$$-\underline{\delta}(q,ua) = \delta(\underline{\delta}(q,u),a)$$

- Note that $\underline{\delta}(q,a) = \delta(q,a)$ for every $a \in \Sigma$;
- so $\underline{\delta}$ does extend δ .

Example trace

Diagrams (when available) make it very easy to compute δ(q,w) --- just trace the path labeled w starting at q.

• E.g. trace 101 on the diagram below starting at q_1 q_0 q_1 q_1 q_2 q_2 q_1 q_2 q_1

- Implementation and precise arguments need the formal definition.
- $\underline{\delta}(q_1, 101) = \delta(\underline{\delta}(q_1, 10), 1)$ = $\delta(\delta(\underline{\delta}(q_1, 1), 0), 1)$ = $\delta(\delta(\delta(q_1, 1), 0), 1)$ = $\delta(\delta(q_1, 0), 1)$ = $\delta(q_2, 1)$ 0 1 = q_2 $\rightarrow q_0 q_1 q_0$

 \mathbf{q}_1

*q₂

 q_2

 q_2

 q_1

 \mathbf{q}_2

Language of accepted strings

ADFA = $(\mathbf{Q}, \Sigma, \mathbf{s}, \mathbf{F}, \delta)$, accepts a string **w** iff $\underline{\delta}(\mathbf{s}, w) \in \mathbf{F}$

The language of the automaton A is

$$L(A) = \{w \mid A \text{ accepts } w\}.$$

More formally
 $L(A) = \{w \mid \underline{\delta}(Start(A), w) \in Final(A)\}$

Example:

Find a DFA whose language is the set of all strings over {a,b,c} that contain aaa as a substring.

DFA's as Programs

Transition function

trans :: (q -> s -> q) -> q -> [s] -> q
trans d q [] = q
trans d q (s:ss) = trans d (d q s) ss
accept :: (Eq q) => DFA q s -> [s] -> Bool
accept
 m@(DFA{delta = d,start = q0,final = f}) w
 = elem (trans d q0 w) f

An Example

 $ma = DFA \{ states = [0,1,2], \}$ symbols = [0,1], delta = p a ->(2*p+a) `mod` 3, start = 0, final = [2]}