
Instantaneous Descriptions

ID's for TM's are strings of the form α –q– β ,
where α, β ∈ Γ* and q ∈ Q.

The string α represents the non-blank tape
contents to the left of the head.

The string β represents the non-blank tape
contents to the right of the head, including the
currently scanned cell.

Adding or deleting a few blank symbols at the
beginning of an ID results in an equivalent ID.
Both represent the same instant in the execution
of a TM.

Example Instaneous Description

-p- 1 1 0 3

1 -q- 1 0 3

1 1 -r- 0 3

1 -s- 1 0 3

TM's transitions induce the relation |- between ID's.
Let ω =X1. . . Xi-1 –q– Xi . . . Xk be an ID.

If δ(q,Xi) is undefined, then there are no ID's ω ' such
that ω |- ω '.

If δ(q,Xi)=(p,Y,R) then
ω |- ω ' holds for ω ' = X1. . . Xi-1 Y –p– Xi+1. . . Xk

Similarly, if δ(q,X_i)=(p,Y,L)
then ω |- ω’ holds for ω’ =X1. . . –p– Xi-1YXi+1 . . . Xk

Note

If, in the first case, we have i=k, (that is we
are at the end of the non-blank portion of
the tape to the right) then we need to use
the equivalent representation

ω = X1 . . . Xk-1 –q– Xk B

for our formula to make sense. Similarly, we
add a B to the beginning of ω whenever
necessary.

Example

Here is the sequence of ID's of our example
machine,showing its execution with the given
input 0101:

–p– 0101 |- 0 –q– 101 |-01 –r– 01 |- 0 –s– 101

The machine halts, since there are no moves from
the state s. When the input is 0111, the machine
goes forever, as follows:

-P- 0111 |- 0 –q- 111 |- 01 –r– 11 |- 011 –t– 1 |-
0111 –t– |- 0111B –t– |- 0111BB –t– |- …

The Language of a TM

We define the language of the TM M to be
the set L(M) of all strings w ∈ Σ*

such that: Q0 w |-* α –p– β
for some p ∈ F and any α, β

Languages accepted by TM's are call
recursively enumerable (RE).

Example. For our example machine, we
have L(M)= (0+1)(0+1)0(0+1)*

Automata and Formal Languages

Tim Sheard 7Lecture 17

Example Instantaneous Description 2

Recognize anbm

"aabbb"
-0- a a b b b
^ a -0- a b b b
^ a a -0- b b b
^ a a b -1- b b
^ a a b b -1- b
^ a a b b b -1-
^ a a b b b -H- ^

"aabc"
-0- a a b c
^ a -0- a b c
^ a a -0- b c
Stuck at ^ a a b -1- c

Automata and Formal Languages

Tim Sheard 8Lecture 17

Example Instantaneous Description 3

Recognize anbncn “aabbc”
-0- a a b b c c
^ X -1- a b b c c
^ X a -1- b b c c
^ X a Y -2- b c c
^ X a Y b -2- c c
^ X a Y -3- b Z c
^ X a -3- Y b Z c
^ X -3- a Y b Z c
^ -3- X a Y b Z c
^ X -0- a Y b Z c
^ X X -1- Y b Z c
^ X X Y -1- b Z c
^ X X Y Y -2- Z c
^ X X Y Y Z -2- c
^ X X Y Y -3- Z Z
^ X X Y -3- Y Z Z
^ X X -3- Y Y Z Z
^ X -3- X Y Y Z Z
^ X X -0- Y Y Z Z
^ X X Y -0- Y Z Z
^ X X Y Y -0- Z Z
^ X X Y Y Z -4- Z
^ X X Y Y Z Z -4-
^ X X Y Y Z Z -H- ^

Automata and Formal Languages

Tim Sheard 9Lecture 17

Example Instantaneous Description 3

Add 1 to a binary number "101011"
-0- 1 0 1 0 1 1
^ 1 -0- 0 1 0 1 1
^ 1 0 -0- 1 0 1 1
^ 1 0 1 -0- 0 1 1
^ 1 0 1 0 -0- 1 1
^ 1 0 1 0 1 -0- 1
^ 1 0 1 0 1 1 -0-
^ 1 0 1 0 1 -1- 1 ^
^ 1 0 1 0 -1- 1 0 ^
^ 1 0 1 -1- 0 0 0 ^
^ 1 0 -2- 1 1 0 0 ^
^ 1 -2- 0 1 1 0 0 ^
^ -2- 1 0 1 1 0 0 ^
-2- ^ 1 0 1 1 0 0 ^
^ ^ -H- 1 0 1 1 0 0 ^

Nondeterministic Turing Machines (NTM)

The definition of a NTM is the same as the definition of a TM, except
that the transition function has the type δ : Q × Γ → P(Q × Γ ×
{L,R})

At each move, an NTM has a finite set of choices.

The execution of an NTM is naturally represented by a tree whose non-
root nodes are all future ID's (instantaneous descriptions).

q0w

ID-1 ID-2

ID-3

ID-6 ID-7

ID-4 ID-5

ID-9ID-8

IDs and ND-Turing machines

In a nondeterministic Turing machine an
instantaneous description can lead to a
set of successor Ids
id |- { id1, id2 }

q0w

ID-1 ID-2

ID-3

ID-6 ID-7

ID-4 ID-5

ID-9ID-8

ND acceptance

In a ND-Turing machine, if an ID has an
empty set of successor IDs, and is in final
state, the ND-Turing machine accepts.

To run a ND-Turing machine we must visit
all the possible paths ina “fair” manner

q0w

ID-1 ID-2

ID-3

ID-6 ID-7

ID-4 ID-5

ID-9ID-8

Example

Recall {w | w contains even number of 0s, or is a string of length 2 with exactly two 1’s}

-A- 1 1

^ 1 -D- 1 | ^ 1 -B- 1

^ 1 1 -E- | ^ 1 -D- 1

^ 1 1 -D- | ^ 1 1 -E-

^ 1 1 -E- ^| ^ 1 1 -D-

^ 1 1 -D- ^| ^ 1 1 -E- ^

Accepted

^ 1 1 -E- ^

Negative example
-A- 1 1 0 1

^ 1 -D- 1 0 1 | ^ 1 -B- 1 0 1

^ 1 1 -E- 0 1 | ^ 1 -D- 1 0 1

^ 1 1 -D- 0 1 | ^ 1 1 -E- 0 1

^ 1 1 -F- 0 1 | ^ 1 1 -D- 0 1

^ 1 1 0 -C- 1 | ^ 1 1 -F- 0 1

^ 1 1 0 -C- 1

^ 1 1 0 1 -C-

Rejected, no more possibilities

Acceptance by Halting

Here is another way of defining a language
associated with a TM M.

We denote it H(M), and it consists of strings
that cause the TM to halt. Precisely, a string
w ∈ Σ* belongs to H(M)

iff q0 w |-* α p X β
where δ(p,X) is undefined.

Example. For our example machine, we have
H(M)= ε + 0 + 1 + (0+1)(0+1) + (0+1)(0+1)0(0+1)*

Equivalence of
Acceptance by Final State and Halting

How would we prove such an equivalence?

1. Construct a TM that accepts by Halting
from an ordinary one.

2. Construct an ordianry TM from one that
accepts by halting.

Power of Turing Machines (1)

Recall the Church Thesis: Every problem that has
an algorithmic solution can be solved by a Turing
Machine !

How do we become convinced that it is reasonable
to believe this thesis?

First, we can develop some programming
techniques for TM's, allowing us to write
machines for more and more complicated
problems. Structuring states and tape symbols is
particularly useful. Then, there is a possibility to
use one TM as a subroutine for another. After
having written enough TM's, we may get a
feeling that everything that we can program in a
convenient programming language could be done
with TM.

Power of Turing Machines (2)

Second, we can consider some
generalizations of the concept of TM
(multitape TM's, non-deterministic TM's, ...)
and prove that they are essentially just as
powerful as the plain TM's.

Finally, we can prove that all proposed
formalizations of the concept of
computable, of which TM's is only one, are
equivalent. (We won't be doing this, of course.)

TM can encode stateful storage

Some states of a TM can be structured: one
component is the ``state proper'', the
others hold useful data.

Example. We have a TM M=(Q, Σ, Γ,
δ,q_0,B,F) and suppose we want to
modify it so that, when in state r, it swaps
the contents of the two immediate cells
(the scanned one and the next one to the
right), and then go to the state s.

Construction

To do this, we pick two unused symbols p,q and
add to Q the states [q,X] and [p,X], for each X ∈
Γ. We also add the transitions

δ(r,X) = ([q,X],X,R)
δ([q,X],Y) = ([p,Y],X,L)
δ([p,Y],X) = (s,Y,R)

for all X,Y ∈ Γ .

Check that we've achieved the desired effect:
α rXY β |- α X -[q,X]- Y β |- α −[p,Y]- XX β |-

α YX β

Example

A TM for the language of palindromes can
use states of the form [q,a] (a ∈ Σ).

Remembering the first symbol of the string,
it deletes it (puts B in its place), then
moves to the end of the input.

Then it matches the last symbol against the
stored first symbol and, if the match
succeeds, it deletes the last symbol, and
goes back to the first non-blank symbol,
and repeats.

Multiple Tracks

If you'd like the tape cells to contain not one, but
three symbols (perhaps from different alphabets
Γ1, Γ2, Γ3), then you just use the tape alphabet
Γ = Γ1 × Γ2 × Γ3.

Effectively, the tape now has 3 “tracks”, which we
can manipulate independently.

Note that the blank symbol of Γ is (B1,B2,B3),
where Bi is the blank of Γi.

A common application of this idea is to use one
track for “real” data, and the second track for
one or more “markers” that conveniently mark
some positions in the strings.

Example

Suppose we want a TM for the language of
palindromes over {0,1} that contain more 0's
than 1's.

The natural idea is to first check if the input is a
palindrome, then count the 0's and 1's.

The palindrome TM of the previous example cannot
be used because it progressively deletes the
input.

But we can modify it by using the new tape
alphabet Γ '= Γ × {*,B}. At the beginning, we
put the mark * on the first and the last symbol of
the input, then move these two marks one cell
closer, as we check that the ``real'' contents of
the two cells are equal.

Multi-Tape Turing Machines

These generalized TM's can use a finite number of
independent tapes.

0 1 1 0 0 0 1

a a a b c c c c c

0 1 1 1 1 1 1 1

Transitions are determined by the current
state and the contents of all scanned cells
(one on each tape).

On a transition, the TM moves to the next
state, scanned symbols get overwritten,
and each head gets a direction to move
(L, R, or S (stationary)).

Initially, the first tape holds the input. The
other tapes are blank.

Simulating Multitape TM's

To simulate k tapes, use one tape with 2k
tracks. One track holds the contents of
each tape, another marks the position of
the corresponding head.

0 1 1 0 0 0 1

a a a b c c c c c

0 1 1 1 1 1 1 1

↓

↓

↓

One move of the multitape TM M is simulated by a
sequence of moves of the one tape TM M_1:

1. M1 moves left, then right, visiting all the ↓'s
to see what each tape head of M is
scanning.

2. Based on the scanned symbols of M and the
current state of M (that M1 keeps
remembering), M1 knows the next move of
M.

3. With the information about the next move of
M available, M1 visits each ↓ again,
changing the corresponding symbol on one
of the tracks, and moving that ↓
appropriately.

Simulating ND-TM's

An ND-TM N is first simulated by a multitape TM M;
we know that M can be then converted to a one-
tape TM.

On one of its tapes, M maintains a queue of ID's of
N that can arise from a starting ID q0w. These
ID's are separated by a special marker ⊗ .

Execution of M goes in big steps. If ω is the ID at
the front end of the queue, then M computes all
possible ID's ω1, ... ,ωk that are immediate
successors of ω in the execution of N.

A big step of M consists of dequeuing ω and
enqueuing ω1, ... , ωk.

Here is how the queue changes in the first
few big steps (|-|-) when the execution of
N is as in the picture.

q0w |-|- ID-1 ⊗ ID-2
|-|- ID-2 ⊗ ID-3
|-|- ID-3 ⊗ ID-4 ⊗ ID-5
|-|- ID-4 ⊗ ID-5 ⊗ ID-6 ⊗ ID-7
|-|- ID-5 ⊗ ID-6 ⊗ ID-7 ⊗ ID-8
|-|- ID-6 ⊗ ID-7 ⊗ ID-8 ⊗ ID-9

q0
w

ID-1 ID-2

ID-3

ID-6 ID-7

ID-4 ID-5

ID-9ID-8

Note that if the N-tree with the root q0w contains
an accepting ID ω (one in which the occurring
N-state is final), then ω will eventually come to
the front of the M-queue, at which point M can
recognize it as N-accepting, and accept itself.

Other tape(s) of M are used for the necessary
“localized” simulations of M that each big step
requires. For example, M can use a “scratch
tape” to copy the first ID ω from the queue,
and compute three ω's successors ω1, … ,ωk.

See the textbook for more details.

	Instantaneous Descriptions
	Example Instaneous Description
	Slide Number 3
	Note
	Example
	The Language of a TM
	Example Instantaneous Description 2
	Example Instantaneous Description 3
	Example Instantaneous Description 3
	Nondeterministic Turing Machines (NTM)
	IDs and ND-Turing machines
	ND acceptance
	Example
	Negative example
	Acceptance by Halting
	Equivalence of �Acceptance by Final State and Halting
	Power of Turing Machines (1)
	Power of Turing Machines (2)
	TM can encode stateful storage
	Construction
	Example
	Multiple Tracks
	Example
	Multi-Tape Turing Machines
	Slide Number 25
	Simulating Multitape TM's
	Slide Number 27
	Simulating ND-TM's
	Slide Number 29
	Slide Number 30

