CS311 Computational Structures

NP-completeness

Lecture 18

Andrew P. Black Andrew Tolmach

Some complexity classes

- P = Decidable in polynomial time on deterministic TM ("tractable")
- NP = Decidable in polynomial time on nondeterministic TM;

= *Verifiable* in polynomial time on deterministic TM

- PSPACE = Decidable in polynomial space on a TM
- EXPTIME = Decidable in exponential time on a TM
 - Known to contain "intractable" problems

Thursday, 2 December 2010

Classifying problems

- Given a problem, we'd like to locate it as far down in the hierarchy as possible.
- This is often quite hard to do.
- Establishing an *upper* bound requires showing an algorithm
 - Someone may find a cleverer algorithm tomorrow!
 - this will give us a better upper bound
- Establishing a *lower* bound requires showing that there cannot be an algorithm.

• $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$

- $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$
- A_{CFG} is decidable

- $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$
- A_{CFG} is decidable
 - what does this mean?

- $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$
- A_{CFG} is *decidable*
 - what does this mean?
 - ► is it decidable "quickly"

- $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$
- A_{CFG} is *decidable*
 - what does this mean?
 - is it decidable "quickly"
- How did we show that A_{CFG} is decidable?

• For any CFG G, there is a PDA that decides whether w is in L(G)

- For any CFG G, there is a PDA that decides whether w is in L(G)
 - What does this mean?

- For any CFG G, there is a PDA that decides whether w is in L(G)
 - What does this mean?
 - Problem:

- For any CFG G, there is a PDA that decides whether w is in L(G)
 - What does this mean?
 - Problem:
- But: we can simulate a non-deterministic TM with a deterministic TM!

- For any CFG G, there is a PDA that decides whether w is in L(G)
 - What does this mean?
 - Problem:
- But: we can simulate a non-deterministic TM with a deterministic TM!
 - Problem:

• Recall Chomsky Normal Form:

► Let *G* be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly 2|w| - 1 steps are required in any derivation of *w*.

- ► Let *G* be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly 2|w| - 1 steps are required in any derivation of *w*.
- deriving a string of length
 3 takes 5 steps

- ► Let *G* be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly 2|w| - 1 steps are required in any derivation of *w*.
- deriving a string of length 3 takes 5 steps
- deriving a string of length 4 takes 7 steps

- ► Let *G* be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly 2|w| - 1 steps are required in any derivation of *w*.
- deriving a string of length
 3 takes 5 steps
- deriving a string of length 4 takes 7 steps
- deriving a string of length *n* takes 2n-1 steps

• Recall Chomsky Normal Form:

- ► Let *G* be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly 2|w| - 1 steps are required in any derivation of *w*.
- deriving a string of length
 3 takes 5 steps
 - deriving a string of length 4 takes 7 steps
 - deriving a string of length *n* takes 2n-1 steps

• How many trials must a TM make before it "chooses" the right tree?

- ► Let *G* be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly 2|w| - 1 steps are required in any derivation of *w*. S→AB
- deriving a string of length 3 takes 5 steps • deriving a string of length 4 takes 7 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps • deriving a string of length *n* takes 2n-1 steps
- How many trials must a TM make before it "chooses" the right tree?
 - if there are p productions, we make ≤p choices; in k steps we make p^k choices, so for a string of length n, we make O(pⁿ) choices.

- Dynamic Programming—The CYK Algorithm
 - What's Dynamic Programming?
 - accumulate information about small(er) subproblems
 - use this to solve progressively larger subproblems
 - Key: the subproblems overlap
 - We can save work by *memoizing* the answers

Is w in L(G)?

- Look at all the substrings of w
- Build a matrix *M* where *M*[*i*,*j*] contains the set of variables that can generate *w*[*i*..*j*]= *w*_{*i*}*W*_{*i*+1}*W*_{*i*+2}...*W*_{*j*}
- start on the diagonal and work up

	1	2	3	4	• • •	• • •	<i>n</i> –1	n
1								
2	_							
3	_	_						
4	_	_	_					
•••	_	_	_	_				
•••								
<i>n</i> –1	_	_	_		_	_		
n		_	_	_	_		_	

- suppose w = abcdefgxb
 - productions that yield terminals:

B→c C→a D→b | x E→c | f F→d | g

- Step 1: substrings of w of length 1
 - e.g., w[1..1]=a, can be generated from C

	1	2	3	4	• • •	• • •	<i>n</i> –1	п
1	С							
2	_	D						
3	_	_	B,E					
4	_	_	_	F				
• • •		_		_				
• • •								
<i>n</i> –1	_	_		_	_		D	
n		_	_					D
	а	b	С	d	•••		X	b

productions: $S \rightarrow AB \quad A \rightarrow CD$

B→EF | GF

- Step 2: substrings of w of length 2
 - e.g., w[1..2]=ab
 - Split into shorter substrings in all possible ways
 - Use entries already in M to compute M [1..2]
 - w[2,3] can only be derived from DB or DE, and neither is on the rhs of a production
 - w[3,4] can be derived from BF or EF; EF can be derived from B

	1	2	3	4	• • •	• • •	<i>n</i> –1	п
1	С	А						
2	_	D	Ø					
3	_	_	B,E	В				
4	_	_		F				
• • •	_	_		_				
• • •								
<i>n</i> –1	_	_		_	_	_	D	
n	_	_	_	_			_	D
	а	b	С	d			X	b

productions: $S \rightarrow AB \quad A \rightarrow CD$

B→EF | GF

- Step k: substrings of w of length k
 - e.g., w[1..k]
 - Split into 2 shorter substrings in all k-1possible ways
 - Use entries already in M to compute M [1..k]
- Step *n*: *M*[1, *n*] can be broken into 2 shorter substrings in *n*–1 ways
- $\mathbf{S} \in M[1, n] \equiv w \in L(\mathbf{G})$

		1	2	3	4	• • •	• • •	<i>n</i> –1	n
	1	С	Α						
	2	—	D	Ø					
	3	—		B,E	В				
	4	—			F				
	• • •	—			_				
	• • •								
K	<i>i</i> –1	—			_	_	_	D	
	n	_			_	_	_		D
		а	b	С	d			X	b

- CYK algorithm is $O(n^3)$, where n is the length of the input.
- So every context-free language is a member of P

Thanks to Cocke, Younger and Kasami

Hopcroft pp 304–307

- P = the class of languages for which membership can be decided quickly
- NP = the class of languages for which membership can be verified quickly

"quickly" means "in polynomial time"

We don't know for sure which of these diagrams is correct

- P = the class of languages for which membership can be decided quickly
- NP = the class of languages for which membership can be verified quickly

"quickly" means "in polynomial time"

We don't know for sure which of these diagrams is correct

- P = the class of languages for which membership can be decided quickly
- NP = the class of languages for which membership can be verified quickly

"quickly" means "in polynomial time"

We don't know for sure which of these diagrams is correct

- There are many interesting problems that we can show to be in NP, but that no one has shown to be in P.
- So is $P \neq NP$? Nobody knows!
- To investigate this question, it makes sense to look at the **hardest** problems in NP
 - these are least likely to be in P
 - if we can show that one is in P they all will be

"Completeness"

- A "complete" problem is one that is "as hard as possible" in its category.
- How can we formalize the idea of one problem being as hard as any other?
- We use the idea of *Reducibility*

Reducibility, again

- A problem A is **polynomial-time reducible** to a problem B if there is a polynomial-time function *f* that maps instances of A to instances of B s.t.
 - I is a yes-instance of $A \equiv f(I)$ is a yes-instance of B
- Suppose we have an algorithm for B
 - We can solve an instance of A by first using f to transform it to an instance of B, and then solving the B-instance.
 - If our B-algorithm is polynomial, then so is this one for A.

17

NP-complete problems

- A language L is NP-complete if
 - L is in NP
 - Every language in NP is polynomial-time reducible to L.
- If L is NP-complete and $L \in P$, then P = NP
 - This is unlikely, so proving a problem is NP-complete strongly suggest that it is intractable
- If A is NP-complete and A is polynomial-time reducible to B, then B is also NP-complete

Some NP-complete problems — see Garey and Johnson

- Hamiltonian circuit: Given a directed graph, is there a path that visits each vertex once?
- Traveling salesman: Given a set of cities, can they be toured traveling no more than a specified maximum distance?
- Partition: Given a finite set of positive integers, can they be partitioned into two subsets that sum to the same value?
- Graph isomorphism: Given two graphs, are they isomorphic?
- Quadratic diophantine equations: Given positive integers a,b,c, are there positive integers x and y such that $ax^2 + by = c$?
- Multiprocessor scheduling: Given a set of tasks with specified lengths, a number of processors, and a deadline, can the tasks be scheduled to complete by the deadline?

Computers and Intractability: A Guide to the Theory of NP-Completeness

M. R. Garey & D. S. Johnson

W.H.Freeman

Thursday, 2 December 2010

SAT: Boolean Satisfiability

 Consider formulas over boolean variables and the operations AND (∧), OR (∨), and NOT (¬).

• Ex. $\phi_1 = (x \land y) \lor (\neg y \land z)$ $\phi_2 = (x \lor y) \land \neg y \land \neg x$

- A formula is *satisfiable* if we can assign a value True (tt) or False (ff) to each variable such that the formula is True
 - Ex. x=tt, y=ff, z=tt satisfies ϕ_1 , but ϕ_2 is unsatisfiable

- SAT = { (φ) | φ is a satisfiable Boolean formula } is the paradigmatic example of an NP-complete language
 - Cook-Levin Theorem.
- A closely-related NP-complete language is 3SAT: the satisfiable 3CNF-formulae
 - CFN = conjunctive normal form: an AND of ORs of literals (variables or their negations)

• SAT is NP-complete

• What does this mean?

- What does this mean?
 - SAT \in NP

- What does this mean?
 - SAT \in NP
 - every $A \in NP$ is poly-time reducible to SAT

- What does this mean?
 - SAT \in NP
 - every $A \in NP$ is poly-time reducible to SAT

• SAT is NP-complete

- What does this mean?
 - SAT \in NP
 - every $A \in NP$ is poly-time reducible to SAT

• How on earth can we prove such a thing?

Cook-Levin Theorem

- Basic Idea:
 - Any problem in NP has a NDTM that solves it in poly-time, say in time n^k
 - Let's look at the n^k steps that the NDTM must take in solving it
 - Represent each of those steps as a boolean formula

- An accepting NDTM computation on an input w is described by a finite tableau where
 - each row is a machine configuration
 - the first row is the start configuration with w
 - each row leads to the next by a legal transition
 - some row describes an accepting configuration

Format of tableau

#		•••	q 0	WI	w ₂	•••	Wn	•••	#] ↑
#									#	
#									#	
										n^{\prime}
#									#	

$$\longleftarrow n^k \longrightarrow n^k \longrightarrow n^k \longrightarrow$$

Encoding the tableau

- N accepts w iff there exists an accepting tableau for N on w.
- We define a boolean formula φ that is satisfiable iff such a tableau exists
 - Each tableau cell[i,j] contains a symbol in $C = Q \cup \Gamma \cup \{\#\}$
 - Represent cell contents using boolean variables x_{i,j,s} where x_{i,j,s} = 1 iff cell[i,j] = s
 - Define $\phi = \phi_{cell} \land \phi_{start} \land \phi_{move} \land \phi_{accept}$

Details

φ_{cell} ensures that exactly one symbol appears in each cell

$$\phi_{cell} = \bigwedge_{\substack{1 \le i \le n^k \\ 1 \le j \le 2n^k + 3}} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right) \right]$$

φ_{start} ensures that the first row of the tableau is the starting configuration

$$\phi_{start} = x_{1,1,\#} \wedge x_{1,2,\sqcup} \wedge \ldots \wedge x_{1,n^{k}+1,\sqcup} \wedge x_{1,n^{k}+2,q_{0}} \wedge x_{1,n^{k}+3,w_{1}} \wedge x_{1,n^{k}+4,w_{2}} \wedge \ldots \wedge x_{1,n^{k}+n+2,w_{n}} \wedge x_{1,n^{k}+n+3,\sqcup} \wedge \ldots \wedge x_{1,2n^{k}+2,\sqcup} \wedge x_{1,2n^{k}+3,\#}$$

 φ_{accept} ensures that an accepting configuration occurs somewhere in the tableau

$$\phi_{accept} = \bigvee_{\substack{1 \le i \le n^k \\ 1 \le j \le 2n^k + 3 \\ q_a \in F}} x_{i,j,q_a}$$

 φ_{move} ensures that rows of tableau represent legal transitions of the machine

$$\phi_{move} = \bigwedge_{\substack{1 \le i < n^k \\ 1 \le j < 2n^k + 3}} (\text{legal_window_at}(i, j))$$

$$\text{legal_window_at}(i, j) = \bigvee_{\substack{1 \le i < n^k \\ 1 \le j < 2n^k + 3}} \left(\begin{array}{c} x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j+1,a_3} \land \\ x_{i+1,j-1,a_4} \land x_{i+1,j,a_5} \land x_{i+1,j+1,a_6} \end{array} \right)$$

Legal windows

- A 2 × 3 window is legal if it might appear when one configuration correctly follows another in the tableau
- Set of legal windows for machine is defined by alphabets, states and transition function
- Straightforward but tedious to define all legal windows

Example window constructions

- Suppose we have $\delta(q_1,a) = \{(q_1,b,R)\}$ and $\delta(q_1,b) = \{(q_2,c,L),(q_2,a,R)\}$
- Here are some legal windows:

• Here are some illegal windows:

a	٩I	b					
qı	а	a					

Checking polynomial time

- It is crucial that φ can be constructed in polynomial time
- This follows from
 - size of tableau: $\sim 2n^{2k}$ cells
 - finite number of symbols: $|Q| + |\Gamma| + 1$
 - hence $O(n^{2k})$ variables
 - φ contains fixed-size fragment per cell

Proving a problem is NP-complete by reduction

3CNF

- a *literal* is a variable, or a negation of a variable, e.g.
 - $x_1, \neg x_2, x_3, \neg x_2$
- a 3CNF formula is a boolean formula in conjunctive normal form in which each conjunction has exactly 3 literals, e.g.

$$(x_1 \lor \neg x_2 \lor x_3) \land (x_3 \lor \neg x_5 \lor x_6) \land (x_3 \lor x_6 \lor \neg x_4)$$

SAT can be poly-time reduced to 3SAT

- Details are in Hopcroft §10.3.2
- Key idea:

$$(a \lor b \lor c \lor d) = (a \lor b \lor x) \land (c \lor d \lor \neg x)$$

The Clique Problem

- The Clique problem is to decide if a graph contains a clique of a certain size
 - a clique is a subgraph in which every pair of nodes is connected by an edge
- CLIQUE = { $\langle G, k \rangle \mid G$ is an undirected graph with a *k*-clique}

CLIQUE is in NP

- Here is a verifier for CLIQUE:
 - Input is $\langle G, k \rangle$, c
 - 1. Test whether *c* is a set of *k* nodes in G: -O(|c|) time
 - 2. Test whether *G* contains all edges connecting nodes in *c*: $-O(|c|^2)$ time
 - 3. If both tests pass, *accept*, otherwise, *reject*.
- It runs in time polynomial in the length of the input

- What's the time complexity of a search for k-cliques in a graph with n nodes?
- No polynomial time algorithm is known

3SAT is polynomial-time reducible to CLIQUE

Idea:

- Convert formulae to graphs in a certain form.
- Find cliques in the graph
 - each clique corresponds to a satisfying assignment in the formula.

Construction

- Given a formula φ with k conjuncts we build a graph G and look for k-cliques.
 - One node in G for each occurrence of a literal in φ.
 Each node is labeled by that literal.
 - Organize the nodes into groups of 3, called triples.
 Each triple corresponds to a conjunct in *φ*.
 - Each node in the triple corresponds to a literal in the clause.

Thursday, 2 December 2010

Construction (continued):

- Connect all the nodes in *G* except:
 - 1. Don't connect two nodes if they are in the same triple
 - 2. Don't connect two nodes if one is labeled x and the other is labeled $\neg x$

Example of construction

 $\varphi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$

Proof

- Suppose that φ has a satisfying assignment
 - Then at least one literal is true in every clause
 - In G, select one node in each triple whose label is true: those nodes form a k-clique

Example of construction

 $\varphi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)$

Proof

- Suppose that φ has a satisfying assignment
 - Then at least one literal is true in every clause
 - In G, select one node in each triple whose label is true: those nodes form a k-clique
 - $^{\circ}$ There are k of them, because we chose one per clause
 - Each pair is joined by an edge, because no two are in the same triple, and no two are labeled with contradictory literals

- Suppose that G has a k-clique c
 - No two nodes are in the same triple
 - because there are no edges joining such nodes
 - Each triple contains exactly one node of c
 - because there are *k* triples
 - Assign truth values to the literals so that each node in c is TRUE
 - This is always possible, because no edge joins x and $\neg x$
 - This assignment satisfies φ, because one literal in each of the k-clauses of φ is TRUE
- So CLIQUE is NP-complete

