CS311 Computational Structures

NP-completeness

Lecture 18

Andrew P. Black
Andrew Tolmach

Some complexity classes

- $P=$ Decidable in polynomial time on deterministic TM ("tractable")
- NP = Decidable in polynomial time on nondeterministic TM;
$=$ Verifiable in polynomial time on deterministic TM
- PSPACE = Decidable in polynomial space on a TM
- EXPTIME = Decidable in exponential time on a TM
- Known to contain "intractable" problems

Some important classes in the "complexity zoo"

Classifying problems

- Given a problem, we'd like to locate it as far down in the hierarchy as possible.
- This is often quite hard to do.
- Establishing an upper bound requires showing an algorithm
- Someone may find a cleverer algorithm tomorrow!
- this will give us a better upper bound
- Establishing a lower bound requires showing that there cannot be an algorithm.

Example: Acfg

Example: Acfg

- $A_{c F G}=\{\langle\mathrm{G}, w\rangle \mid \mathrm{G}$ is a CFG that generates $w\}$

Example: Acfg

- $\mathrm{A}_{\mathrm{cFG}}=\{\langle\mathrm{G}, w\rangle \mid \mathrm{G}$ is a CFG that generates $w\}$
- $A_{\text {CFg }}$ is decidable

Example: Acfg

- $A_{c F G}=\{\langle\mathrm{G}, w\rangle \mid \mathrm{G}$ is a CFG that generates $w\}$
- $\mathrm{AcFg}_{\mathrm{cf}}$ is decidable
- what does this mean?

Example: Acfg

- $A_{c F G}=\{\langle G, w\rangle \mid G$ is a CFG that generates $w\}$
- Acfg is decidable
- what does this mean?
- is it decidable "quickly"

Example: Acfg

- $\mathrm{AcFg}_{\mathrm{cFG}}=\{\langle\mathrm{G}, w\rangle \mid \mathrm{G}$ is a CFG that generates $w\}$
- Acfg is decidable
- what does this mean?
- is it decidable "quickly"
- How did we show that $A_{c F g}$ is decidable?

Attempt 1

Attempt 1

- For any CFG G, there is a PDA that decides whether w is in $L(\mathrm{G})$

Attempt 1

- For any CFG G, there is a PDA that decides whether w is in $L(\mathrm{G})$
-What does this mean?

Attempt 1

- For any CFG G, there is a PDA that decides whether w is in $L(\mathrm{G})$
-What does this mean?
- Problem:

Attempt 1

- For any CFG G, there is a PDA that decides whether w is in $L(G)$
-What does this mean?
- Problem:
- But: we can simulate a non-deterministic TM with a deterministic TM!

Attempt 1

- For any CFG G, there is a PDA that decides whether w is in $L(G)$
-What does this mean?
- Problem:
- But: we can simulate a non-deterministic TM with a deterministic TM!
- Problem:

Attempt 2

- Recall Chomsky Normal Form:
- Let G be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly $2|w|-1$ steps are required in any derivation of w.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AB} \\
& \mathrm{~A} \rightarrow \mathrm{CD} \\
& \mathrm{~B} \rightarrow \mathrm{EF}|\mathrm{GF}| \mathrm{c} \\
& \mathrm{C} \rightarrow \mathrm{a} \\
& \mathrm{D} \rightarrow \mathrm{~b} \mid \mathrm{x} \\
& \mathrm{E} \rightarrow \mathrm{c} \mid \mathrm{f} \\
& \mathrm{~F} \rightarrow \mathrm{~d} \mid \mathrm{g}
\end{aligned}
$$

Attempt 2

- Recall Chomsky Normal Form:
- Let G be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly $2|w|-1$ steps are required in any derivation of w.
- deriving a string of length 3 takes 5 steps

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AB} \\
& \mathrm{~A} \rightarrow \mathrm{CD} \\
& \mathrm{~B} \rightarrow \mathrm{EF}|\mathrm{GF}| \mathrm{c} \\
& \mathrm{C} \rightarrow \mathrm{a} \\
& \mathrm{D} \rightarrow \mathrm{~b} \mid \mathrm{x} \\
& \mathrm{E} \rightarrow \mathrm{c} \mid \mathrm{f} \\
& \mathrm{~F} \rightarrow \mathrm{~d} \mid \mathrm{g}
\end{aligned}
$$

Attempt 2

- Recall Chomsky Normal Form:
- Let G be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly $2|w|-1$ steps are required in any derivation of w.
- deriving a string of length 3 takes 5 steps
- deriving a string of length 4 takes 7 steps

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AB} \\
& \mathrm{~A} \rightarrow \mathrm{CD} \\
& \mathrm{~B} \rightarrow \mathrm{EF}|\mathrm{GF}| \mathrm{c} \\
& \mathrm{C} \rightarrow \mathrm{a} \\
& \mathrm{D} \rightarrow \mathrm{~b} \mid \mathrm{x} \\
& \mathrm{E} \rightarrow \mathrm{c} \mid \mathrm{f} \\
& \mathrm{~F} \rightarrow \mathrm{~d} \mid \mathrm{g}
\end{aligned}
$$

Attempt 2

- Recall Chomsky Normal Form:
- Let G be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly $2|w|-1$ steps are required in any derivation of w.
- deriving a string of length 3 takes 5 steps
- deriving a string of length 4 takes 7 steps
- deriving a string of length n takes $2 n-1$ steps

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow C D \\
& B \rightarrow E F|G F| c \\
& C \rightarrow a \\
& D \rightarrow b \mid x \\
& E \rightarrow c \mid f \\
& F \rightarrow d \mid g
\end{aligned}
$$

Attempt 2

- Recall Chomsky Normal Form:
- Let G be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly $2|w|-1$ steps are required in any derivation of w.
- deriving a string of length 3 takes 5 steps
- deriving a string of length 4 takes 7 steps
- deriving a string of length n takes $2 n-1$ steps

- How many trials must a TM make before it "chooses" the right tree?

Attempt 2

- Recall Chomsky Normal Form:
- Let G be a context-free grammar in Chomsky Normal Form. For any non-empty string $w \in L(G)$, exactly $2|w|-1$ steps are required in any derivation of w.
- deriving a string of length 3 takes 5 steps
- deriving a string of length 4 takes 7 steps
- deriving a string of length n takes $2 n-1$ steps

$S \rightarrow A B$
$A \rightarrow C D$
$B \rightarrow E F|G F| c$
$\mathrm{C} \rightarrow \mathrm{a}$
$D \rightarrow b \mid x$
$\mathrm{E} \rightarrow \mathrm{c} \mid \mathrm{f}$
$\mathrm{F} \rightarrow \mathrm{d} \mid \mathrm{g}$
- How many trials must a TM make before it "chooses" the right tree?
- if there are p productions, we make $\leq p$ choices; in k steps we make p^{k} choices, so for a string of length n, we make $O\left(p^{n}\right)$ choices.

Attempt 3

- Dynamic Programming-The CYK Algorithm
- What's Dynamic Programming?
- accumulate information about small(er) subproblems
- use this to solve progressively larger subproblems
- Key: the subproblems overlap
- We can save work by memoizing the answers

Is w in $\mathrm{L}(\mathrm{G})$?

- Look at all the substrings of w
- Build a matrix M where $M[i, j]$ contains the set of variables that can generate $w[i . . j]=$ $w_{i} w_{i+1} w_{i+2} \ldots w_{j}$
- start on the diagonal and work up

	1	2	3	4	\ldots	\ldots	$n-1$	n
1								
2	-							
3	-	-						
4	-	-	-					
\ldots	-	-	-	-				
\ldots								
$n-1$	-	-	-	-	-	-		
n	-	-	-	-	-	-	-	

- $\operatorname{suppose} w=$ abcdefgxb
- productions that yield terminals:
$\mathrm{B} \rightarrow \mathrm{c}$
$\mathrm{C} \rightarrow \mathrm{a}$
$\mathrm{D} \rightarrow \mathrm{b} \mid \mathrm{x}$
$\mathrm{E} \rightarrow \mathrm{C} \mid \mathrm{f}$
$\mathrm{F} \rightarrow \mathrm{d} \mid \mathrm{g}$
- Step 1: substrings of w of length 1
- e.g., $w[1 . .1]=a$, can be generated from C

	1	2	3	4	\ldots	\ldots	$n-1$	n
1	C							
2	-	D						
3	-	-	B, E					
4	-	-	-	F				
\ldots	-	-	-	-				
\ldots								
$n-1$	-	-	-	-	-	-	D	
n	-	-	-	-	-	-	-	D
a						b	C	d

- Step 2: substrings of w of length 2
- e.g., $w[1 . .2]=a b$
- Split into shorter substrings in all possible ways
- Use entries already in M to compute M [1..2]
- $w[2,3]$ can only be derived from DB or $D E$, and neither is on the rhs of a production
- $w[3,4]$ can be derived from BF or EF; EF can be derived from B

	1	2	3	4	\ldots	\ldots	$n-1$	n
1	C	A						
2	-	D	\varnothing					
3	-	-	B, E	B				
4	-	-	-	F				
\ldots	-	-	-	-				
\ldots								
$n-1$	-	-	-	-	-	-	D	
n	-	-	-	-	-	-	-	D
a							b	C

$$
\text { productions: } \quad \mathrm{S} \rightarrow \mathrm{AB} \quad \mathrm{~A} \rightarrow \mathrm{CD} \quad \mathrm{~B} \rightarrow \mathrm{EF} \mid \mathrm{GF}
$$

- Step k : substrings of w of length k
- e.g., $w[1 . . k]$
- Split into 2 shorter substrings in all $k-1$ possible ways
- Use entries already in M to compute M [1..k]
- Step $n: M[1, n]$ can be broken into 2 shorter substrings in $n-1$ ways
- $\mathrm{S} \in M[1, n] \equiv w \in \mathrm{~L}(\mathrm{G})$

	1	2	3	4	\ldots	\ldots	$n-1$	n
1	C	A						
2	-	D	\varnothing					
3	-	-	B, E	B				
4	-	-	-	F				
\ldots	-	-	-	-				
\ldots								
$n-1$	-	-	-	-	-	-	D	
n	-	-	-	-	-	-	-	D
a						b	C	d

- CYK algorithm is $\mathrm{O}\left(n^{3}\right)$, where n is the length of the input.
- So every context-free language is a member of P

Thanks to Cocke, Younger and Kasami
Hopcroft pp 304-307

P vs. NP

$P=$ the class of languages for which membership can be decided quickly

NP = the class of languages for which membership can be verified quickly
"quickly" means "in polynomial time"

We don't know for sure which of these diagrams is correct

P vs. NP

$P=$ the class of languages for which membership can be decided quickly

NP = the class of languages for which membership can be verified quickly
"quickly" means "in polynomial time"

We don't know for sure which of these diagrams is correct

P vs. NP

$P=$ the class of languages for which membership can be decided quickly

NP = the class of languages for which membership can be verified quickly
"quickly" means "in polynomial time"

\leftarrow Widely suspected

We don't know for sure which of these diagrams is correct

P vs. NP

- There are many interesting problems that we can show to be in NP, but that no one has shown to be in P.
- So is $\mathrm{P} \neq \mathrm{NP}$? Nobody knows!
- To investigate this question, it makes sense to look at the hardest problems in NP
- these are least likely to be in P
- if we can show that one is in P - they all will be

"Completeness"

- A "complete" problem is one that is "as hard as possible" in its category.
- How can we formalize the idea of one problem being as hard as any other?
- We use the idea of Reducibility

Reducibility, again

- A problem A is polynomial-time reducible to a problem B if there is a polynomial-time function f that maps instances of A to instances of B s.t.
- I is a yes-instance of $\mathrm{A} \equiv f(\mathrm{I})$ is a yes-instance of B
- Suppose we have an algorithm for B
- We can solve an instance of A by first using f to transform it to an instance of B, and then solving the B-instance.
- If our B-algorithm is polynomial, then so is this one for A.

NP-complete problems

- A language L is NP-complete if
- L is in NP
- Every language in NP is polynomial-time reducible to L .
- If L is $N P$-complete and $L \in P$, then $P=N P$
- This is unlikely, so proving a problem is NP-complete strongly suggest that it is intractable
- If A is NP-complete and A is polynomial-time reducible to B, then B is also NP-complete

Some NP-complete problems - see Garey and Johnson

- Hamiltonian circuit: Given a directed graph, is there a path that visits each vertex once?
- Traveling salesman: Given a set of cities, can they be toured traveling no more than a specified maximum distance?
- Partition: Given a finite set of positive integers, can they be partitioned into two subsets that sum to the same value?
- Graph isomorphism: Given two graphs, are they isomorphic?
- Quadratic diophantine equations: Given positive integers a, b, c, are there positive integers x and y such that $a x^{2}+b y=c$?
- Multiprocessor scheduling: Given a set of tasks with specified lengths, a number of processors, and a deadline, can the tasks be scheduled to complete by the deadline?

Computers and Intractability: A Guide to the Theory of NPCompleteness

M. R. Garey \& D. S. Johnson

W. H. Freeman

SAT: Boolean Satisfiability

- Consider formulas over boolean variables and the operations AND ($\wedge)$, OR (\vee), and NOT (\neg).
- Ex. $\phi_{1}=(x \wedge y) \vee(\neg y \wedge z) \quad \phi_{2}=(x \vee y) \wedge \neg y \wedge \neg x$
- A formula is satisfiable if we can assign a value True (tt) or False (ff) to each variable such that the formula is True
- Ex. $x=t t, y=f f, z=t t$ satisfies ϕ_{1}, but ϕ_{2} is unsatisfiable

SAT is NP-complete

- SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean formula $\}$ is the paradigmatic example of an NP-complete language
- Cook-Levin Theorem.
- A closely-related NP-complete language is 3SAT: the satisfiable 3CNF-formulae
- CFN = conjunctive normal form: an AND of ORs of literals (variables or their negations)

Cook-Levin Theorem [1971]

Cook-Levin Theorem [1971]

- SAT is NP-complete

Cook-Levin Theorem [1971]

- SAT is NP-complete

Cook-Levin Theorem [1971]

- SAT is NP-complete
- What does this mean?

Cook-Levin Theorem [1971]

- SAT is NP-complete
- What does this mean?
- SAT \in NP

Cook-Levin Theorem [1971]

- SAT is NP-complete
- What does this mean?
- SAT \in NP
- every $A \in N P$ is poly-time reducible to SAT

Cook-Levin Theorem [1971]

- SAT is NP-complete
- What does this mean?
- SAT \in NP
- every $A \in N P$ is poly-time reducible to SAT

Cook-Levin Theorem [1971]

- SAT is NP-complete
- What does this mean?
- SAT \in NP
- every $A \in N P$ is poly-time reducible to SAT
- How on earth can we prove such a thing?

Cook-Levin Theorem

- Basic Idea:
- Any problem in NP has a NDTM that solves it in poly-time, say in time n^{k}
- Let's look at the n^{k} steps that the NDTM must take in solving it
- Represent each of those steps as a boolean formula
- An accepting NDTM computation on an input w is described by a finite tableau where
- each row is a machine configuration
- the first row is the start configuration with w
- each row leads to the next by a legal transition
- some row describes an accepting configuration

Format of tableau

Portland SN State

Encoding the tableau

- N accepts w iff there exists an accepting tableau for N on w.
- We define a boolean formula ϕ that is satisfiable iff such a tableau exists
- Each tableau cell[i,j] contains a symbol in $C=Q \cup \Gamma \cup\{\#\}$
- Represent cell contents using boolean variables $x_{i, j, s}$ where $\mathrm{x}_{\mathrm{i}, \mathrm{j}, \mathrm{s}}=1 \mathrm{iff} \operatorname{cell}[\mathrm{i}, \mathrm{j}]=\mathrm{s}$
- Define $\phi=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {move }} \wedge \phi_{\text {accept }}$

Details

- $\phi_{\text {cell }}$ ensures that exactly one symbol appears in each cell

$$
\phi_{\text {cell }}=\bigwedge_{\substack{1 \leq i \leq n^{k} \\ 1 \leq j \leq 2 n^{k}+3}}\left[\left(\bigvee_{s \in C} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in C \\ s \neq t}}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right]\right.
$$

- $\phi_{\text {start }}$ ensures that the first row of the tableau is the starting configuration

$$
\begin{aligned}
& \phi_{\text {start }}= x_{1,1, \#} \wedge x_{1,2, \sqcup} \wedge \ldots \wedge x_{1, n^{k}+1, \sqcup} \wedge \\
& x_{1, n^{k}+2, q_{0}} \wedge x_{1, n^{k}+3, w_{1} \wedge x_{1, n^{k}+4, w_{2}} \wedge \ldots \wedge x_{1, n^{k}+n+2, w_{n}} \wedge} \\
& x_{1, n^{k}+n+3, \sqcup} \wedge \ldots \wedge x_{1,2 n^{k}+2, \sqcup} \wedge x_{1,2 n^{k}+3, \#}
\end{aligned}
$$

- $\phi_{\text {accept }}$ ensures that an accepting configuration occurs somewhere in the tableau

$$
\phi_{\text {accept }}=\begin{array}{|}
\substack{ \\
1 \leq i \leq n^{k} \\
1 \leq j \leq 2 n^{k}+3 \\
q_{a} \in F}
\end{array}
$$

- $\phi_{\text {move }}$ ensures that rows of tableau represent legal transitions of the machine

$$
\left.\phi_{\text {move }}=\bigwedge_{\substack{1 \leq i<n^{k} \\ 1 \leq j<2 n^{k}+3}} \text { (legal_window_at }(i, j)\right)
$$

legal_window_at $(i, j)=\underset{\text { legal_window }\left(a_{1}, \ldots, a_{6}\right)}{\bigvee}\binom{x_{i, j-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge x_{i, j+1, a_{3}} \wedge}{x_{i+1, j-1, a_{4}} \wedge x_{i+1, j, a_{5}} \wedge x_{i+1, j+1, a_{6}}}$

Legal windows

- A 2×3 window is legal if it might appear when one configuration correctly follows another in the tableau
- Set of legal windows for machine is defined by alphabets, states and transition function
- Straightforward but tedious to define all legal windows

Example window constructions

- Suppose we have $\delta\left(q_{1}, a\right)=\left\{\left(q_{1}, b, R\right)\right\}$ and

$$
\delta\left(\mathrm{q}_{1}, \mathrm{~b}\right)=\left\{\left(\mathrm{q}_{2}, \mathrm{c}, \mathrm{~L}\right),\left(\mathrm{q}_{2}, \mathrm{a}, \mathrm{R}\right)\right\}
$$

- Here are some legal windows:

a	q_{1}	b
a_{2}	a	c

a	q_{1}	b
a	a	q_{2}

a	a	ql
a	a	b

$\#$	b	a
$\#$	b	a

a	b	a
a	b	q_{2}

b	b	b
c	b	b

- Here are some illegal windows:

a	b	a
a	a	a

a	a_{1}	b
a_{1}	a	a

b	a_{1}	b
q_{2}	b	q_{2}

Checking polynomial time

- It is crucial that ϕ can be constructed in polynomial time
- This follows from
- size of tableau: $\sim 2 n^{2 k}$ cells
- finite number of symbols: $|\mathrm{Q}|+|\Gamma|+1$
- hence $O\left(n^{2 k}\right)$ variables
- ϕ contains fixed-size fragment per cell

Proving a problem is
 NP-complete by reduction

3CNF

- a literal is a variable, or a negation of a variable, e.g.
- $x_{1}, \neg x_{2}, x_{3}, \neg x_{2}$
- a 3CNF formula is a boolean formula in conjunctive normal form in which each conjunction has exactly 3 literals, e.g.
- $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee \neg x_{5} \vee x_{6}\right) \wedge\left(x_{3} \vee x_{6} \vee \neg x_{4}\right)$

SAT can be poly-time reduced to 3SAT

- Details are in Hopcroft §10.3.2
- Key idea:

$$
(a \vee b \vee c \vee d) \equiv(a \vee b \vee x) \wedge(c \vee d \vee \neg x)
$$

The Clique Problem

- The Clique problem is to decide if a graph contains a clique of a certain size
- a clique is a subgraph in which every pair of nodes is connected by an edge
- CLIQUE $=\{\langle G, k\rangle \mid G$ is an undirected graph with a k-clique $\}$

CLIQUE is in NP

- Here is a verifier for CLIQUE:
- Input is $\langle G, k\rangle, c$

1. Test whether c is a set of k nodes in $G:-O(|c|)$ time
2. Test whether G contains all edges connecting nodes in c : $-O\left(|c|^{2}\right)$ time
3. If both tests pass, accept, otherwise, reject.

- It runs in time polynomial in the length of the input

Is CLIQUE in P?

- What's the time complexity of a search for k-cliques in a graph with n nodes?
- No polynomial time algorithm is known

3SAT is polynomial-time reducible to CLIQUE

Idea:

- Convert formulae to graphs in a certain form.
- Find cliques in the graph
- each clique corresponds to a satisfying assignment in the formula.

Construction

- Given a formula ϕ with k conjuncts we build a graph G and look for k-cliques.
- One node in G for each occurrence of a literal in ϕ. Each node is labeled by that literal.
- Organize the nodes into groups of 3 , called triples. Each triple corresponds to a conjunct in ϕ.
- Each node in the triple corresponds to a literal in the clause.

Example of construction

$-\mathrm{x}_{2}$
$-x_{2}$

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg X_{2} \vee \neg X_{2}\right) \wedge\left(\neg x_{1} \vee X_{2} \vee X_{2}\right)
$$

Construction (continued):

- Connect all the nodes in G except:

1. Don't connect two nodes if they are in the same triple
2. Don't connect two nodes if one is labeled x and the other is labeled $\neg x$

Example of construction

Proof

- Suppose that ϕ has a satisfying assignment
- Then at least one literal is true in every clause
- In G, select one node in each triple whose label is true: those nodes form a k-clique

Example of construction

Proof

- Suppose that ϕ has a satisfying assignment
- Then at least one literal is true in every clause
- In G, select one node in each triple whose label is true: those nodes form a k-clique
- There are k of them, because we chose one per clause
- Each pair is joined by an edge, because no two are in the same triple, and no two are labeled with contradictory literals
- Suppose that G has a k-clique c
- No two nodes are in the same triple
- because there are no edges joining such nodes
- Each triple contains exactly one node of c
- because there are k triples
- Assign truth values to the literals so that each node in C is TRUE
- This is always possible, because no edge joins x and $\neg x$
- This assignment satisfies ϕ, because one literal in each of the k-clauses of ϕ is TRUE
- So CLIQUE is NP-complete

