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Some complexity classes

• P = Decidable in polynomial time on deterministic TM  
(“tractable”)

• NP = Decidable in polynomial time on non-
deterministic TM;

= Verifiable in polynomial time on deterministic TM

• PSPACE = Decidable in polynomial space on a TM

• EXPTIME = Decidable in exponential time on a TM

‣ Known to contain “intractable” problems 
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Some important classes 
in the “complexity zoo”
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Classifying problems
• Given a problem, weʼd like to locate it as far 

down in the hierarchy as possible.

• This is often quite hard to do.

• Establishing an upper bound requires 
showing an algorithm
‣ Someone may find a cleverer algorithm tomorrow!

° this will give us a better upper bound

• Establishing a lower bound requires showing 
that there cannot be an algorithm.
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Example: ACFG
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Example: ACFG

• ACFG = { ⟨G, w⟩ ⎮G is a CFG that generates w}
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Example: ACFG

• ACFG = { ⟨G, w⟩ ⎮G is a CFG that generates w}

• ACFG is decidable
‣ what does this mean?

‣ is it decidable “quickly”
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Example: ACFG

• ACFG = { ⟨G, w⟩ ⎮G is a CFG that generates w}

• ACFG is decidable
‣ what does this mean?

‣ is it decidable “quickly”

• How did we show that ACFG is decidable?
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Attempt 1
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Attempt 1

• For any CFG G, there is a PDA that 
decides whether w is in L(G)
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• For any CFG G, there is a PDA that 
decides whether w is in L(G)
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‣ Problem: 
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Attempt 1

• For any CFG G, there is a PDA that 
decides whether w is in L(G)
‣ What does this mean?

‣ Problem: 

• But: we can simulate a non-deterministic 
TM with a deterministic TM!
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Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For 

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are 
required in any derivation of w. 

7

d

S→AB
A→CD
B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | ga b c

S

AB

CD

c

Thursday, 2 December 2010



Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For 

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are 
required in any derivation of w. 

7

d

S→AB
A→CD
B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | ga b c

S

AB

CD

c

• deriving a string of length 
3 takes 5 steps

Thursday, 2 December 2010



Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For 

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are 
required in any derivation of w. 

7

d

S→AB
A→CD
B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | g

• deriving a string of length 
4 takes 7 steps

a b c

S

AB

CD

c

• deriving a string of length 
3 takes 5 steps

Thursday, 2 December 2010



Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For 

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are 
required in any derivation of w. 

7

d

S→AB
A→CD
B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | g

• deriving a string of length 
4 takes 7 steps

• deriving a string of length 
n takes 2n–1 steps

a b c

S

AB

CD

c

• deriving a string of length 
3 takes 5 steps

Thursday, 2 December 2010



Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For 

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are 
required in any derivation of w. 

7

d

S→AB
A→CD
B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | g

• deriving a string of length 
4 takes 7 steps

• deriving a string of length 
n takes 2n–1 steps

a b c

S

AB

CD

c

• deriving a string of length 
3 takes 5 steps

• How many trials must a TM make before it “chooses” the right tree?

Thursday, 2 December 2010



Attempt 2
• Recall Chomsky Normal Form:
‣ Let G be a context-free grammar in Chomsky Normal Form. For 

any non-empty string w ∈ L(G), exactly 2|w| − 1 steps are 
required in any derivation of w. 
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B→EF | GF | c
C→a
D→b | x
E→c | f
F→d | g

• deriving a string of length 
4 takes 7 steps

• deriving a string of length 
n takes 2n–1 steps

a b c

S

AB

CD

c

• deriving a string of length 
3 takes 5 steps

• How many trials must a TM make before it “chooses” the right tree?

‣ if there are p productions, we make ≤p choices; in k steps we make pk 
choices, so for a string of length n, we make O(pn) choices.
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Attempt 3
• Dynamic Programming—The CYK Algorithm

‣ Whatʼs Dynamic Programming?
° accumulate information about small(er) 

subproblems
° use this to solve progressively larger 

subproblems

‣ Key: the subproblems overlap
° We can save work by memoizing the 

answers
8
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1 2 3 4 … … n–1 n

1

2

3

4

…

…

n–1

n

–

– –

– – –

– – – –

– – – – – –

– – – – – – –

Is w in L(G)?

• Look at all the 
substrings of w

• Build a matrix M 
where M [i,j] 
contains the set of 
variables that can 
generate w[i..j]= 
wiwi+1wi+2…wj

• start on the 
diagonal and work 
up
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1 2 3 4 … … n–1 n

1

2

3

4

…

…

n–1

n

C

– D

– – B,E

– – – F

– – – –

– – – – – – D

– – – – – – – D

• suppose w = 
abcdefgxb

• productions that 
yield terminals:

B →c
C→a
D→b | x
E→c | f
F→d | g

• Step 1: substrings 
of w of length 1

• e.g., w[1..1]=a, 
can be generated 
from C

a     b     c     d  …    …   x     b
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1 2 3 4 … … n–1 n

1

2

3

4

…

…

n–1

n

C A

– D ∅

– – B,E B

– – – F

– – – –

– – – – – – D

– – – – – – – D

• Step 2: substrings of 
w of length 2

• e.g., w[1..2]=ab
• Split into shorter 

substrings in all 
possible ways

• Use entries already 
in M to compute M
[1..2]

• w[2,3] can only be 
derived from DB or 
DE, and neither is on 
the rhs of a production

• w[3,4] can be derived 
from BF or EF; EF can 
be derived from B

productions: 	
 S→AB	
	
 A→CD	
  B→EF | GF 

a     b     c     d  …    …   x     b
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1 2 3 4 … … n–1 n

1

2

3

4

…

…

n–1

n

C A

– D ∅

– – B,E B

– – – F

– – – –

– – – – – – D

– – – – – – – D

• Step k: substrings of 
w of length k

• e.g., w[1..k]
• Split into 2 shorter 

substrings in all k–1 
possible ways

• Use entries already 
in M to compute M
[1..k]

• Step n: M[1, n] can 
be broken into 2 
shorter substrings in 
n–1 ways

• S ∈ M[1, n] ≡ w ∈ L(G)

productions: 	
 S→AB	
	
 A→CD	
  B→EF | GF 

a     b     c     d  …    …   x     b
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• CYK algorithm is O(n3), where n is the 
length of the input.

• So every context-free language is a member 
of P

Thanks to Cocke, Younger and Kasami
Hopcroft pp 304–307
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P vs. NP
P = the class of languages for which membership can be 

decided quickly

NP = the class of languages for which membership can be 
verified quickly

“quickly” means “in polynomial time”

# # # # # # # #

We donʼt know for sure which of these diagrams is correct
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P
P=NPor
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“quickly” means “in polynomial time”

# # # # # # # #

We donʼt know for sure which of these diagrams is correct
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NP

P ←Widely suspected 
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• There are many interesting problems that we 
can show to be in NP, but that no one has 
shown to be in P.

• So is P ≠ NP ?  Nobody knows!

• To investigate this question, it makes sense 
to look at the hardest problems in NP 
‣ these are least likely to be in P

‣ if we can show that one is in P — they all will be

15

P vs. NP
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• A “complete” problem is one that is “as 
hard as possible” in its category.

• How can we formalize the idea of one 
problem being as hard as any other?

• We use the idea of Reducibility

“Completeness”
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Reducibility, again
• A problem A is polynomial-time reducible 

to a problem B if there is a polynomial-time 
function f that maps instances of A to 
instances of B s.t.
‣ I is a yes-instance of A ≡	 f(I)	 is a yes-instance of B

• Suppose we have an algorithm for B
‣ We can solve an instance of A by first using f to 

transform it to an instance of B, and then solving the 
B-instance.

‣ If our B-algorithm is polynomial, then so is this one 
for A.
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NP-complete problems

• A language L is NP-complete if
‣ L is in NP

‣ Every language in NP is polynomial-time reducible to L.

• If L is NP-complete and L ∈ P, then P = NP
‣ This is unlikely, so proving a problem is NP-complete 

strongly suggest that it is intractable

• If A is NP-complete and A is polynomial-time 
reducible to B, then B is also NP-complete

19
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Some NP-complete problems
                                        — see Garey and Johnson
• Hamiltonian circuit: Given a directed graph, is there a path that 

visits each vertex once?

• Traveling salesman: Given a set of cities, can they be toured 
traveling no more than a specified maximum distance? 

• Partition: Given a finite set of positive integers, can they be 
partitioned into two subsets that sum to the same value?

• Graph isomorphism: Given two graphs, are they isomorphic?

• Quadratic diophantine equations: Given positive integers a,b,c, 
are there positive integers x and y such that ax 

2 + by = c ?

• Multiprocessor scheduling: Given a set of tasks with 
specified lengths, a number of processors, and a deadline, 
can the tasks be scheduled to complete by the deadline?

20
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Computers and 
Intractability: A 
Guide to the 
Theory of NP-
Completeness

M. R. Garey & D. S. Johnson 

W. H. Freeman

Thursday, 2 December 2010
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SAT: Boolean Satisfiability

• Consider formulas over boolean variables and 
the operations AND (∧), OR (∨), and NOT (¬).
‣ Ex.  ϕ1 = (x ∧ y) ∨ (¬y ∧ z)  # ϕ2 = (x ∨ y)  ∧ ¬y ∧ ¬x

• A formula is satisfiable if we can assign a 
value True (tt) or False (ff) to each variable 
such that the formula is True
‣ Ex. x=tt, y=ff, z=tt satisfies ϕ1, but ϕ2 is unsatisfiable

22
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SAT is NP-complete
• SAT = {⟨ϕ⟩⎮ ϕ is a satisfiable Boolean formula } 

is the paradigmatic example of an 
NP-complete language
‣ Cook-Levin Theorem. 

• A closely-related NP-complete language is 
3SAT: the satisfiable 3CNF-formulae
‣ CFN = conjunctive normal form: an AND of ORs of 

literals (variables or their negations)

23
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Cook-Levin Theorem [1971]

24

Thursday, 2 December 2010



Cook-Levin Theorem [1971]

• SAT is NP-complete
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Cook-Levin Theorem [1971]
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• What does this mean?
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Cook-Levin Theorem [1971]

• SAT is NP-complete

• What does this mean?

‣ SAT ∈ NP

‣ every A ∈ NP is poly-time reducible to SAT

• How on earth can we prove such a thing?

24
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Cook-Levin Theorem

• Basic Idea:

‣ Any problem in NP has a NDTM that 
solves it in poly-time, say in time nk

‣ Letʼs look at the nk steps that the NDTM 
must take in solving it

‣ Represent each of those steps as a 
boolean formula

25
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• An accepting NDTM computation on an 
input w is described by a finite tableau 
where
‣ each row is a machine configuration 

‣ the first row is the start configuration with w

‣ each row leads to the next by a legal transition

‣ some row describes an accepting configuration

26
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Format of tableau

27

#

#
#

#

#

#

#

#

⊔⊔ ⊔ ⊔... ... ...q0 w1 w2 wn

nk

nk

nk
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Encoding the tableau
• N accepts w iff there exists an accepting 

tableau for N on w.

• We define a boolean formula ϕ that is 
satisfiable iff such a tableau exists
‣ Each tableau cell[i,j] contains a symbol in                   

C = Q ∪ Γ ∪ {#}

‣ Represent cell contents using boolean variables xi,j,s 
where xi,j,s = 1 iff cell[i,j] = s

‣ Define ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept

28
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Details
• ϕcell ensures that exactly one symbol 

appears in each cell

29

• ϕstart ensures that the first row of the 
tableau is the starting configuration

φstart = x1,1,# ∧ x1,2,� ∧ . . . ∧ x1,nk+1,�∧
x1,nk+2,q0 ∧ x1,nk+3,w1 ∧ x1,nk+4,w2 ∧ . . . ∧ x1,nk+n+2,wn

∧
x1,nk+n+3,� ∧ . . . ∧ x1,2nk+2,� ∧ x1,2nk+3,#

φcell =
�

1 ≤ i ≤ nk

1 ≤ j ≤ 2nk + 3





�
�

s∈C

xi,j,s

�
∧





�

x, t ∈ C
s �= t

(xi,j,s ∨ xi,j,t)







s
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‣ ϕaccept ensures that an accepting configuration 
occurs somewhere in the tableau

30

φaccept =
�

1 ≤ i ≤ nk

1 ≤ j ≤ 2nk + 3
qa ∈ F

xi,j,qa

φmove =
�

1 ≤ i < nk

1 ≤ j < 2nk + 3

(legal window at(i, j))

legal window at(i, j) =
�

legal window(a1, . . . , a6)

�
xi,j−1,a1 ∧ xi,j,a2 ∧ xi,j+1,a3∧
xi+1,j−1,a4 ∧ xi+1,j,a5 ∧ xi+1,j+1,a6

�

‣ ϕmove ensures that rows of tableau represent legal 
transitions of the machine
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Legal windows

• A 2 ⨉ 3 window is legal if it might appear 
when one configuration correctly follows 
another in the tableau

• Set of legal windows for machine is 
defined by alphabets, states and transition 
function

• Straightforward but tedious to define all 
legal windows

31
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Example window constructions
• Suppose we have δ(q1,a) = {(q1,b,R)} and 
δ(q1,b) = {(q2,c,L),(q2,a,R)}

• Here are some legal windows:

32

a q1 b
q2 a c

a q1 b
a a q2

a a q1

a a b

# b a
# b a

a b a
a b q2

b b b
c b b

• Here are some illegal windows:
a b a
a a a

a q1 b
q1 a a

b q1 b
q2 b q2
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Checking polynomial time

• It is crucial that ϕ can be constructed in 
polynomial time

• This follows from
‣ size of tableau: ~2n2k cells

‣ finite number of symbols: ⃒Q⃒ + ⃒Γ⃒ + 1

‣ hence O(n 
2k) variables

‣ ϕ contains fixed-size fragment per cell

33
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Proving a problem is           
NP-complete by reduction

34
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3CNF

• a literal is a variable, or a negation of a 
variable, e.g.
‣ x1, ¬x2 , x3, ¬x2

• a 3CNF formula is a boolean formula in 
conjunctive normal form in which each 
conjunction has exactly 3 literals, e.g.
‣ (x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∨ ¬x5 ∨ x6) ∧ (x3 ∨ x6 ∨ ¬x4)

35
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SAT can be poly-time reduced to 3SAT

• Details are in Hopcroft §10.3.2

• Key idea:
(a ∨ b ∨ c ∨ d) ≡ (a ∨ b ∨ x) ∧ (c ∨ d ∨ ¬x)

36
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• The Clique problem is to decide if a graph contains a clique 
of a certain size

‣ a clique is a subgraph in which every pair of nodes is 
connected by an edge

• CLIQUE = {⟨G, k⟩ | G is an undirected graph with a k-clique}

37

The Clique Problem
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CLIQUE is in NP

• Here is a verifier for CLIQUE:
‣ Input is ⟨G, k ⟩, c

1. Test whether c is a set of k nodes in G: — O(|c |) time

2. Test whether G contains all edges connecting nodes in c: 
— O(|c |2) time

3. If both tests pass, accept, otherwise, reject.

• It runs in time polynomial in the length of 
the input

38
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Is CLIQUE in P?

• Whatʼs the time complexity of a search for 
k-cliques in a graph with n nodes?

• No polynomial time algorithm is known

39
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3SAT is polynomial-time
 reducible to CLIQUE

Idea:

• Convert formulae to graphs in a certain 
form.  

• Find cliques in the graph
‣ each clique corresponds to a satisfying assignment 

in the formula.

40
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• Given a formula φ with k conjuncts we build 
a graph G and look for k-cliques.
‣ One node in G for each occurrence of a literal in φ.  

Each node is labeled by that literal.

‣ Organize the nodes into groups of 3, called triples. 
Each triple corresponds to a conjunct in φ.

‣ Each node in the triple corresponds to a literal in 
the clause.

41

Construction
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x1

x2

x1

¬x1 ¬x2 ¬x2

¬x1

x2

x2

ϕ = (x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2)

Example of construction
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Construction (continued):
• Connect all the nodes in G except:

1. Donʼt connect two nodes if they are in the same triple

2. Donʼt connect two nodes if one is labeled x and the 
other is labeled ¬x

43
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x1

x2

x1

¬x1 ¬x2 ¬x2

¬x1

x2

x2

ϕ = (x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2)

Example of construction
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Proof

• Suppose that φ has a satisfying 
assignment
‣ Then at least one literal is true in every clause

‣ In G, select one node in each triple whose label is 
true: those nodes form a k-clique

45
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x1

x2

x1

¬x1 ¬x2 ¬x2

¬x1

x2

x2

ϕ = (x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2)

Example of construction
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Proof

• Suppose that φ has a satisfying 
assignment
‣ Then at least one literal is true in every clause

‣ In G, select one node in each triple whose label is 
true: those nodes form a k-clique
° There are k of them, because we chose one per clause

° Each pair is joined by an edge, because no two are in the 
same triple, and no two are labeled with contradictory 
literals

47
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• Suppose that G has a k-clique c
• No two nodes are in the same triple

- because there are no edges joining such nodes

• Each triple contains exactly one node of c
- because there are k triples

• Assign truth values to the literals so that each node 
in c is TRUE 
- This is always possible, because no edge joins x and ¬x

• This assignment satisfies φ, because one literal in 
each of the k-clauses of φ is TRUE

• So CLIQUE is NP-complete
48
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