
Markov Algorithms



Other Notions of Computability

• Many other notions of computability have been 
proposed, e.g.
– (Type 0 a.k.a. Unrestricted) Grammars
– Partial Recursive Functions
– Lambda calculus
– Markov Algorithms
– Post Algorithms
– Post Canonical Systems, 

• • All have been shown equivalent to Turing 
machines by simulation proofs



Markov Algorithms

• A Markov Algorithm over an alphabet A is a 
finite ordered sequence of productions x→y, 
where x, y ∈ A*. Some productions may be 
“Halt” productions.  e.g. 

abc → b
ba → x (halt)

Execution proceeds as follows:



1. Let the input string be w

2. The productions are scanned in sequence, looking for 
a production x → y where x is a substring of w

3. The left-most x in w is replaced by y

4. If the production is a halt production, we halt

5. If no matching production is found, the process halts

6. If a replacement was made, we repeat from step 2.



• Note that a production Λ → a inserts a at the 
start of the string.

• What does this Markov algorithm do?
aba → b
ba → b
b → a

aabaaa
abaa
ba
b
a



Example – Binary to Unary

1. "|0" -> "0||"
2. "1" -> "0|"
3. "0" -> ""

Input  “101”
• Example from wikipedia

http://en.wikipedia.org/wiki/Markov_algorithm

"0|01"
"00||1"
"00||0|"
"00|0|||"
"000|||||"
"00|||||"
"0|||||"
"|||||"
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Grammars

• We can extend the notion of context-free 
grammars to a more general mechanism

• An (unrestricted) grammar G = (V,Σ,R,S) is just like 
a CFG except that rules in R can take the more 
general form α→β where α,β are arbitrary strings 
of terminals and variables.  α must contain at 
least one variable (or nontermial).

• If α→β then uαv ⇒ uβv (“yields”) in one step
• Define ⇒* (“derives”) as reflexive transitive 

closure of ⇒.



Example - Counting

• Grammar generating {w ∈ {a,b,c}*| w has equal 
numbers of aʼs, bʼs, and cʼs } 

• G = ({S,A,B,C},{a,b,c},R,S) where R is
S → Λ
S → ABCS
AB → BA AC → CA BC → CB
BA → AB CA → AC CB → BC
A → a B → b C → c

Try generating 
ccbaba



Example: {a2^n , n ≥ 0}
• Hereʼs a set of grammar rules
1. S → a
2. S→ ACaB
3. Ca → aaC
4. CB → DB
5. CB → E
6. aD → Da
7. AD →AC
8. aE → Ea
9. AE → Λ

Try generating 23 a’s
S
ACaB
AaaCB
AaaDB
AaDaB
ADaaB
ACaaB
AaaCaB
AaaaaCB
AaaaaDB



(Unrestricted) Grammars
and Turing machines have

equivalent power

• For any grammar G we can find a TM M such 
that L(M) = L(G).

• For any TM M, we can find a grammar G such 
that L(G) = L(M).
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Computation using Numerical Functions

• Weʼre used to thinking about computation as 
something we do with numbers (e.g. on the 
naturals)

• What kinds of functions from numbers to 
numbers can we actually compute?

• To study this, we make a very careful selection 
of building blocks



Primitive Recursive Functions

• The primitive recursive functions from ℕ x ℕ x ... 
x ℕ → ℕ are those built from these primitives:
– zero(x) = 0 
– succ(x) = x+1
– π k,j (x1,x2,...,xk) = xj for 0 < j ≤ k

• using these mechanisms:
– Function composition, and
– Primitive recursion



Function Composition

• Define a new function f in terms of functions h 
and g1, g2, ..., gm as follows:
f(x1,...xn) = h(g1(x1,...,xn),...gm(x1,...,xn))

Example: f(x) = x + 3 can be expressed using two 
compositions as f (x) = succ(succ(succ(x)))



Primitive Recursion

• Primitive recursion defines a new function f in 
terms of functions h and g as follows:
f(x1, ..., xk, 0) = h(x1,...,xk)
f(x1, ..., xk, succ(n)) = g(x1,...,xk, n, f(x1,...,xk,n))

Many ordinary functions can be defined using 
primitive recursion, e.g.
add(x,0) = π1,1(x)
add(x, succ(y)) = succ(π3,3(x, y, add(x,y)))



More P.R. Functions
• For simplicity, we omit projection functions and write 0 for zero(_) 

and 1 for succ(0)

‣ add(x,0) = x 
add(x,succ(y)) = succ(add(x,y))

‣ mult(x,0) = 0 
mult(x,succ(y)) = add(x,mult(x,y))

‣ factorial(0) = 1 
factorial(succ(n)) =  mult(succ(n),factorial(n))

‣ exp(n,0) = 1 
exp(n, succ(n)) = mult(n,exp(n,m))

‣ pred(0) = 0 
pred(succ(n)) = n

• Essentially all practically useful arithmetic functions are primitive 
recursive, but...



Ackermannʼs Function is not
Primitive Recursive

• A famous example of a function that is clearly 
well-defined but not primitive recursive

A(m, n)= 

if m0 then n+1

else if n=0 then A(m–1, 1)

else A(m–1, A(m,n–1))



This function grows extremely fast!



A is not primitive recursive

• Ackermannʼs function grows faster than any 
primitive recursive function, that is:

• for any primitive recursive function f, there is an n 
such that

• A(n, x) > f x

• So A canʼt be primitive recursive



Partial Recursive Functions

• A belongs to class of partial recursive functions, 
a superset of the primitive recursive functions.

• Can be built from primitive recursive operators & 
new minimization operator
– Let g be a (k+1)-argument function.
– Define f(x1,...,xk) as the smallest m such that 

g(x1,...,xk,m) = 0 (if such an m exists)
– Otherwise, f(x1,...,xn) is undefined
– We write f(x1,...,xk) = μm.[g(x1,...,xk,m) = 0]
– Example: μm.[mult(n,m) = 0] = zero(_)





Turing-computable functions

• To formalize the connection between partial 
recursive functions and Turing machines, we 
need to describe how to use TMʼs to compute 
functions on ℕ.

• We say a function f : ℕ x ℕ x ... x ℕ → ℕ is Turing-
computable if there exists a TM that, when 
started in configuration q01n1⊔1n2⊔...⊔1nk, halts 
with just 1f(n1,n2,...nk) on the tape.

• Fact: f is Turing-computable iff it is partial 
recursive.
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