Markov Algorithms

Other Notions of Computability

- Many other notions of computability have been proposed, e.g.
- (Type 0 a.k.a. Unrestricted) Grammars
- Partial Recursive Functions
- Lambda calculus
- Markov Algorithms
- Post Algorithms
- Post Canonical Systems,
- - All have been shown equivalent to Turing machines by simulation proofs

Markov Algorithms

- A Markov Algorithm over an alphabet A is a finite ordered sequence of productions $x \rightarrow y$, where $x, y \in A^{*}$. Some productions may be "Halt" productions. e.g.
abc \rightarrow b
ba \rightarrow x (halt)

Execution proceeds as follows:

1. Let the input string be w
2. The productions are scanned in sequence, looking for a production $x \rightarrow y$ where x is a substring of w
3. The left-most x in w is replaced by y
4. If the production is a halt production, we halt
5. If no matching production is found, the process halts
6. If a replacement was made, we repeat from step 2.

- Note that a production $\Lambda \rightarrow$ a inserts a at the start of the string.
- What does this Markov algorithm do?
aba \rightarrow b
ba \rightarrow b
$b \rightarrow a$

aabaaa
abaa
ba
b
a

Example - Binary to Unary

1. "|0" -> "0||"
2. "1" -> "이"
3. "0" -> ""

Input "101"

- Example from wikipedia
http://en.wikipedia.org/wiki/Markov_algorithm

Other Notions of Computability

- Many other notions of computability have been proposed, e.g.
- (Type 0 a.k.a. Unrestricted) Grammars
- Partial Recursive Functions
- Lambda calculus
- Markov Algorithms
- Post Algorithms
- Post Canonical Systems,
- - All have been shown equivalent to Turing machines by simulation proofs

Grammars

- We can extend the notion of context-free grammars to a more general mechanism
- An (unrestricted) grammar $G=(V, \Sigma, R, S)$ is just like a CFG except that rules in R can take the more general form $\alpha \rightarrow \beta$ where α, β are arbitrary strings of terminals and variables. α must contain at least one variable (or nontermial).
- If $\alpha \rightarrow \beta$ then $u \alpha v \Rightarrow u \beta v$ ("yields") in one step
- Define \Rightarrow^{*} ("derives") as reflexive transitive closure of \Rightarrow.

Example - Counting

- Grammar generating $\left\{w \in\{a, b, c\}^{*} \mid w\right.$ has equal numbers of a's, b's, and c's \}
- $G=(\{S, A, B, C\},\{a, b, c\}, R, S)$ where R is
$S \rightarrow \Lambda$
$S \rightarrow$ ABCS
$\mathrm{AB} \rightarrow \mathrm{BA} \mathrm{AC} \rightarrow \mathrm{CABC} \rightarrow \mathrm{CB}$
Try generating ccbaba
$\mathrm{BA} \rightarrow \mathrm{ABCA} \rightarrow \mathrm{ACCB} \rightarrow \mathrm{BC}$
$A \rightarrow a B \rightarrow b C \rightarrow c$

Example: $\left\{a^{2 \wedge n}, n \geq 0\right\}$

- Here's a set of grammar rules

1. $S \rightarrow a$
2. $\mathrm{S} \rightarrow \mathrm{ACaB}$
3. $\mathrm{Ca} \rightarrow \mathrm{aaC}$
4. $\mathrm{CB} \rightarrow \mathrm{DB}$
5. $\mathrm{CB} \rightarrow \mathrm{E}$
6. $\mathrm{aD} \rightarrow \mathrm{Da}$
7. $\mathrm{AD} \rightarrow \mathrm{AC}$
8. $\mathrm{aE} \rightarrow \mathrm{Ea}$
9. $\mathrm{AE} \rightarrow \Lambda$

Try generating 2^{3} a's S
ACaB
AaaCB
AaaDB
AaDaB
ADaaB
ACaaB
AaaCaB
AaaaaCB
AaaaaDB

(Unrestricted) Grammars and Turing machines have equivalent power

- For any grammar G we can find a TM M such that $L(M)=L(G)$.
- For any TM M, we can find a grammar G such that $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$.

Other Notions of Computability

- Many other notions of computability have been proposed, e.g.
- (Type 0 a.k.a. Unrestricted) Grammars
- Partial Recursive Functions
- Lambda calculus
- Markov Algorithms
- Post Algorithms
- Post Canonical Systems,
- - All have been shown equivalent to Turing machines by simulation proofs

Computation using Numerical Functions

- We're used to thinking about computation as something we do with numbers (e.g. on the naturals)
- What kinds of functions from numbers to numbers can we actually compute?
- To study this, we make a very careful selection of building blocks

Primitive Recursive Functions

- The primitive recursive functions from $\mathbb{N} \times \mathbb{N} \times \ldots$ $\mathrm{x} \mathbb{N} \rightarrow \mathbb{N}$ are those built from these primitives:
- zero(x) $=0$
$-\operatorname{succ}(x)=x+1$
$-\pi k, j(x 1, x 2, \ldots, x k)=x j$ for $0<j \leq k$
- using these mechanisms:
- Function composition, and
- Primitive recursion

Function Composition

- Define a new function f in terms of functions h and $\mathrm{g} 1, \mathrm{~g} 2, \ldots, \mathrm{gm}$ as follows:

$$
f(x 1, \ldots . . x n)=h(g 1(x 1, \ldots, x n), \ldots g m(x 1, \ldots, x n))
$$

Example: $f(x)=x+3$ can be expressed using two compositions as $f(x)=\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(x)))$

Primitive Recursion

- Primitive recursion defines a new function f in terms of functions h and g as follows:

$$
\begin{aligned}
& f(x 1, \ldots, x k, 0)=h(x 1, \ldots, x k) \\
& f(x 1, \ldots, x k, \operatorname{succ}(n))=g(x 1, \ldots, x k, n, f(x 1, \ldots, x k, n))
\end{aligned}
$$

Many ordinary functions can be defined using primitive recursion, e.g.
$\operatorname{add}(x, 0)=\pi 1,1(x)$
$\operatorname{add}(x, \operatorname{succ}(y))=\operatorname{succ}(\pi 3,3(x, y, \operatorname{add}(x, y)))$

More P.R. Functions

- For simplicity, we omit projection functions and write 0 for zero(_) and 1 for $\operatorname{succ}(0)$
$\cdot \operatorname{add}(x, 0)=x$ $\operatorname{add}(x, \operatorname{succ}(y))=\operatorname{succ}(\operatorname{add}(x, y))$
- mult($x, 0$) = 0 $\operatorname{mult}(x, \operatorname{succ}(y))=\operatorname{add}(x, \operatorname{mult}(x, y))$
- factorial(0) = 1
factorial(succ(n)) $=\operatorname{mult}(\operatorname{succ}(\mathrm{n})$,factorial(n$)$)
- $\exp (n, 0)=1$
$\exp (\mathrm{n}, \operatorname{succ}(\mathrm{n}))=\operatorname{mult}(\mathrm{n}, \exp (\mathrm{n}, \mathrm{m}))$
- $\operatorname{pred}(0)=0$ $\operatorname{pred}(\operatorname{succ}(\mathrm{n}))=\mathrm{n}$
- Essentially all practically useful arithmetic functions are primitive recursive, but...

Ackermann's Function is not Primitive Recursive

- A famous example of a function that is clearly well-defined but not primitive recursive
$A(m, n)=$
if m0 then $n+1$ else if $n=0$ then $A(m-1,1)$ else $A(m-1, A(m, n-1))$

This function grows extremely fast!

Values of $\boldsymbol{A}(\boldsymbol{m}, \boldsymbol{n})$

$m \backslash n$	0	1	2	3	4	n
0	1	2	3	4	5	$n+1$
1	2	3	4	5	6	$n+2=2+(n+3)-3$
2	3	5	7	9	11	$2 n+3=2 \cdot(n+3)-3$
3	5	13	29	61	125	$2^{(n+3)}-3$
4	13	65533	$2^{65536}-3$	$2^{2^{65536}}-3$	$A(3, A(4,3))$	$\underbrace{2^{2 \theta^{2}}}_{n+3 \text { twos }}-3$
5	65533	$\underbrace{2^{2 \theta^{2}}}_{65536}-3$	$A(4, A(5,1))$	$A(4, A(5,2))$	$A(4, A(5,3))$	$A(4, A(5, \mathrm{n}-1))$
6	$A(5,1)$	$A(5, A(6,0))$	$A(5, \mathrm{~A}(6,1))$	$A(5, A(6,2))$	$A(5, A(6,3))$	$A(5, A(6, \mathrm{n}-1))$

A is not primitive recursive

- Ackermann's function grows faster than any primitive recursive function, that is:
- for any primitive recursive function f, there is an n such that
- $A(n, x)>f x$
- So A can't be primitive recursive

Partial Recursive Functions

- A belongs to class of partial recursive functions, a superset of the primitive recursive functions.
- Can be built from primitive recursive operators \& new minimization operator
- Let g be a $(k+1)$-argument function.
- Define $f(x 1, \ldots, x k)$ as the smallest m such that $\boldsymbol{g}(x 1, \ldots, x k, m)=0 \quad$ (if such an m exists)
- Otherwise, $f(x 1, \ldots, x n)$ is undefined
- We write $f(x 1, \ldots, x k)=\mu m \cdot[g(x 1, \ldots, x k, m)=0]$
- Example: μm.[mult (n,m) = 0] = zero(_)

Hierarchy of Numeric Functions

Turing-computable functions

- To formalize the connection between partial recursive functions and Turing machines, we need to describe how to use TM's to compute functions on \mathbb{N}.
- We say a function $f: \mathbb{N} \times \mathbb{N} \times \ldots \times \mathbb{N} \rightarrow \mathbb{N}$ is Turingcomputable if there exists a TM that, when started in configuration $q_{0} 1^{n 1} \sqcup 1^{n 2} \sqcup \ldots \sqcup 1^{\text {nk }}$, halts with just $1^{f(n 1, n 2, \ldots n k)}$ on the tape.
- Fact: f is Turing-computable iff it is partial recursive.

