
Automata and Formal Languages

Tim Sheard 1Lecture 8

Are all Languages Regular

We have seen many ways to specify Regular
languages

Are all languages Regular languages?

The answer is No,
How can we tell?

A language is regular if we can describe it using
any of the formalisms we have studied.

If we can’t describe it, does that mean it is not
regular? Maybe we’re not clever enough.

Importance of loops

Consider this DFA. The input string 01011 gets
accepted after an execution that goes through
the state sequence s → p → q → p → q → r.
This path contains a loop (corresponding to the
substring 01) that starts and ends at p. There
are two simple ways of modifying this path
without changing its beginning and ending
states:

s p

q

r

1

1

1

1
0

0

0

(1) delete the loop from the path;
(2) instead of going around the loop once, do it

several times. As a consequence, we see that all
strings of the form 0(10)i11 (where i ≥ 0) are
accepted.

s p

q

r

1

1

1

1
0

0

0

Long paths must contain a loop

Suppose n is the number of states of a DFA.
Then every path of length n or more
makes at least n+1 visits to a state and
therefore must visit some state twice.
Thus, every path of length n or longer
must contain a loop.

Strategy

Every long string in a regular language
must have a loop.

Regular Languages with loops exhibit
certain kinds of patterns that are distinctly
regular.

Languages with long strings that do not
adhere to the loop patterns for regular
languages cannot be regular.

Pumps

Suppose L is a regular language, w is a string in L,
and y is a non-empty substring of w. Thus,
w=xyz, for some strings x, z . We say that y is
a pump in w if all strings xyiz (that is, xz, xyz,
xyyz, xyyyz, …) belong to L.

w

x y
z

a b c d e f

aef
abcdef
abcdbcdef
abcdbcdbcdef

Pumping Lemma

Let L be a regular language. Then there exists a
number n such that all w ∈ L such that for all
|w| ≥ n, there exists a prefix of w whose length
is less than n which contains a pump. Formally:
If w ∈ L and |w| ≥ n then w = xyz such
that
1. y ≠ ε
2. |xy|≤ n (xy is the prefix)
3. xyiz ∈ L

Definition. The number n associated to the
regular language L as described in the Pumping
Lemma is called the pumping constant of L.

Proof

w ∈ L, |w| ≥ n, w = xyz such that 1. y ≠ ε 2. |xy|≤ n 3. xyiz ∈ L

Let the DFA have m states. Let |w|≥m. Consider the
path from the start state s to the (accepting) state
δ(s,w). Just following the first m arcs, we make
m+1 total visits to states, so there must be a loop
formed by some of these arcs.

We can write w=opqr, where p corresponds to that
loop, and|opq| = m (the prefix of size m). Thus
let n=|op|, x=o, y = p, and z = qr.
1) Since every loop has at least one arc, we know |p| >0,

thus y ≠ ε
2) |xy|≤ n because xy = op and n = |op|
3) xyiz ∈ L because If p is a loop, its starts at state si and

δ(si,p) = si, and we know that δ(si,qr) = sfinal.. Thus
δ(sstart,x) = si, Thus for each i δ(si,yi) = si, and were done.

start qi final
x = p

y = q

z = rs

m steps

r | s

Proving non-regularity

To prove that a given language is not regular, we use
the Pumping Lemma as follows.

Assuming L is regular (we are arguing by
contradiction!), let n be the pumping constant of L.
Making no other assumptions about n (we don't know
what it is exactly), we need to produce a string w∈L
of length ≥ n that does not contain a pump in its n-
prefix. This w depends on n; we need to give w for
any value of n.

There are many substrings of the n-prefix of our chosen
w and we must demonstrate that none of them is a
pump. Typically, we do this by writing w=xuy, a
decomposition of w into three substrings about which
we can only assume that u ≠ε and |xu| ≤ n. Then
we must show that for some concrete i (zero or
greater) the string xuiy does not belong to L.

Skill required

Notice the game-like structure of the proof.
Somebody gives us n. Then we give w of
length ≥ n. Then our opponent gives us a
non-empty substring u of the n-prefix of
w (and with it the factorization w =xuy of
w). Finally, we choose i such that xuiy∉ L.

Our first move often requires ingenuity:
We must find w so that we can
successfully respond to whatever our
opponent plays next.

Example 1

We show that L={0k1k | k=0,1,2, …} is not regular.
Assuming the Pumping Lemma constant of L is n, we
take w=0n1n. We need to show that there are no
pumps in the n-prefix of w, which is 0n. If u is a
pump contained in 0n then 0n = xuz, and xuuz must
also be in the language. But since |u| > 0, if |xuz| =
n then |xuuz| = m where m > n. So we obtain a
string 0m1n with m>n, which is obviously not in L, so
a contradiction is obtained, and are assumption that
0K1K is regular must be false.

Note. The same choice of w and i works to show that
the language:

L={w ∈ {0,1}* | w contains equal number of 0s and 1s}

is not regular either.

Example 2

We show that L = { uu | u∈{a,b}* } is not regular.
Let n be the pumping constant. Then we choose
w=anbanb which clearly has length greater than
n.

The initial string an must contain the pump, u. So
w = xuybanb, and xuyb = anb. But pumping u 0
times it must be the case that xybanb is in L too.
But since u is not ε, we see that xyb ≠anb, since
it must have fewer a’s. Which leads to a
contradiction. Thus our original assumption that
L was regular must be false.

Question. If in response to the given n we play
w=anan, the opponent has a chance to win. How?

	Are all Languages Regular
	Importance of loops
	
	Long paths must contain a loop
	Strategy
	Pumps
	Pumping Lemma
	Proof
	Slide Number 9
	Proving non-regularity
	Skill required
	Example 1
	Example 2

