Regular Expressions

- Fix an alphabet Σ. We define now regular expressions and how each of them specifies a language.
- Definition. The set of regular expressions (with respect to Σ) is defined inductively by the following rules:

1. The symbols \varnothing and Λ are regular expressions
2. Every symbol $\alpha \in \Sigma$ is a regular expression

- 3. If E and F are regular expressions, then (E^{*}), (EF) and (E+F) are regular expressions.

Example Program

data RegExp a
= Lambda
| Empty
| One a
| Union (RegExp a) (RegExp a)
| Cat (RegExp a) (RegExp a)
| Star (RegExp a)

Regular Expressions as Languages

- Definition. For every regular expression E, there is an associated language $L(E)$, defined inductively as follows:

1. $L(\varnothing)=\varnothing$ and $L(\Lambda)=\{\Lambda\}$
2. $L(a)=\left\{{ }^{\prime} a^{\prime}\right\}$
3. Inductive cases
4. $L\left(E^{*}\right)=(L(E))^{*}$
5. $L(E F)=L(E) L(F) \quad$ recall implicit use of dot $L(E) \bullet L(F)$
6. $L(E+F)=L(E) \cup L(F)$

- Definition. A language is regular if it is of the form $L(E)$ for some regular expression E.

Equivalence

1. We say that regular expressions E and F are equivalent iff $L(E)=L(F)$.
2. We treat equivalent expressions as equal (just as we do with arithmetic expressions; (e.g., $5+7=7+5$).
3. Equivalences $(E+F)+G=E+(F+G)$ and $(E F) G=E(F G)$ allow us to omit many parentheses when writing regular expressions.
4. Even more parentheses can be omitted when we declare the precedence ordering of the three operators :
5. star (binds tightest)
6. concatenation
7. union (binds least of all)

RE's over $\{0,1\}$

- Fill in the blank
- $E_{1}=0+11$
then $\mathrm{L}\left(\mathrm{E}_{1}\right)=$
- $E_{2}=(00+01+10+11)^{*}$ then $L\left(E_{2}\right)=$ \qquad
- $\mathrm{E}_{3}=0^{*}+1^{*}$
- $\mathrm{E}_{4}=\left(00^{*}+11^{*}\right)^{*}$
then $L\left(E_{3}\right)=$
- $\mathrm{E}_{5}=(1+\varepsilon)(01)^{*}(0+\varepsilon)$ then $L\left(\mathrm{E}_{5}\right)=$

Computing a language

- We can compute a language by using the definition of the meaning of a regular expression
- $L\left(a+b . c^{*}\right)=L(a) \cup L\left(b c^{*}\right)$
- $L\left(a+b . c^{*}\right)=L(a) U\left(L(b) . L\left(c^{*}\right)\right)$
- $L\left(a+b . c^{*}\right)=\{a\} \cup\left(\{b\} .\{c\}^{*}\right)$
- $L\left(a+b . c^{*}\right)=\{a\} \cup\left(\{b\} .\left\{\Lambda, c, c c, c c c, \ldots, c^{n}\right\}\right)$
- $L\left(a+b . c^{*}\right)=\{a\} \cup\left(\left\{b, b c, b c c, b c c c, \ldots, b c^{n}\right\}\right)$
- $\left.L\left(a+b . c^{*}\right)=\left\{a, b, b c, b c c, b c c c, \ldots, b c^{n}\right\}\right)$

Laws about Regular expressiosn

- The regular expressions form an algebra
- There are many laws (just as there are laws about arithmetic $(5+2)=(2+5)$

Laws about +

1. $R+T=T+R$
2. $R+\varnothing=\varnothing+R=R$
3. $R+R=R$
4. $R+(S+T)=(R+S)+T$

Laws about .

1. $\mathrm{R} \cdot \varnothing=\varnothing \cdot \mathrm{R}=\varnothing$
2. $R . \Lambda=\Lambda . R=R$
3. (R.S).T = R.(S.T)

- With Implicit.

1. $R \varnothing=\varnothing R=\varnothing$
2. $R \Lambda=\Lambda R=R$
3. $(R S) T=R(S T)$

Distributive Properties

1. $R(S+T)=R S+R T$
2. $(S+T) R=S R+T R$

Closure Properties *

1. $\varnothing *=\Lambda *=\Lambda$
2. $R^{*}=R^{*} R^{*}=\left(R^{*}\right)^{*}=R+R^{*}$
3. $R^{*}=\Lambda+R^{*}=(\Lambda+R)^{*}=(\Lambda+R) R^{*}=\Lambda+R R^{*}$
4. $R^{*}=\left(\Lambda+\ldots+R^{k}\right)^{*}$ for all $k>=1$
5. $R^{*}=\Lambda+R+\ldots+R^{(k-1)}+R^{k} R^{*}$ for all $k>=1$
6. $R R^{*}=R^{*} R$
7. $R(S R)^{*}=(R S)^{*} R$
8. $\left(R^{*} S\right)^{*}=\Lambda+(R+S)^{*} S$
9. $\left(R S^{*}\right)^{*}=\Lambda+R(R+S)^{*}$
