Regular Grammars

Definition

- A Regular Grammar is a quadruple $G=(V, T, P, S)$, where

1. V is a finite set of variables (nonterminals, syntactic categories)
2. T is a finite set of terminals (alphabet)
3. P is a finite set of productions : rules of the forms

1.	$V->\Lambda$	(λ)
2.	$V->w$	(β)
3.	$V->V$	$(\gamma$ rules $)$
4.	$V->w V$	$(\delta$ rules $)$

where $w \in T^{*}$
4. S , the start symbol, is an element of V

Example 1

Non-terminals $=[S, B]$
Terminals $=[a, b]$
Start = S
S ->
$S->$ a S
$S \rightarrow B$
$B \rightarrow b$
$B \rightarrow b B$

Example 2

Non-terminals $=[S, C]$
Terminals $=[a, b, c]$
Start $=$ S
S -> aS
S -> bC
C ->
C-> cC

Example 3

Non-terminals $=[A, B, C]$
Terminals $=[\mathrm{a}, \mathrm{b}]$
Start = A
A \rightarrow a A
A \rightarrow a C
A \rightarrow b B
$B->a B$
C $->b$ B
B ->

Derivation

- We say a grammar derives a string if
- Start with any rule whose LHS is the start symbol. Write down the RHS.
- Repeatedly, replace any Non-terminal, X, in the written down term, with rhs, where (X -> rhs) is one of the productions.
- When there are no more Non-terminals, written down term is the derived string.

Example

- Rule
- Right-Hand-Side
- aS
- a a S
- a abC
- $a \operatorname{abc} C$
- a abccC
- a abcc
- S-> a S
- S -> a S
- $\mathrm{S}->\mathrm{b}$ C
- C -> C C
- C -> C C
- C ->

S

Tree Derivation

b C

C C

c C

aabcc

NFA to RegGram

Non-terminals $=[\mathbf{S O}, \mathbf{S 1}, \mathbf{S 2}]$
Terminals $=[a, b]$
Start = S0
S0 -> a S1
S0 -> b S2
S1-> a S1
S1-> b S1
S2 -> a S2
S2 -> b S2
S1 ->

For every transition
I -a-> J

Add a production
SI -> a SJ

For every transition
I - Λ-> J
Add a production
SJ ->

For every final state K
Add a production
Sj ->

RegGram to GenNFA

Terminals $=[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}]$
Start = SO
SO -> a b SO
SO -> c d S1
S1->
S1 -> c S1

The non-terminal become the states, but also invent a new final state F

For each kind of prod

1. $V->\Lambda$
2. $V->w$
3. $\quad \mathrm{V} \rightarrow \mathrm{V} \quad(\gamma$ rules $)$
4. $\quad V->w \vee$ (δ rules)

Add a transition

1. $I->\Lambda$ add $I-\Lambda \rightarrow P$
2. I->w add $\mid-w->F$
3. I-> w J add I-w->J
4. I -> J add I $-\Lambda \rightarrow$ J

Simplify GenNFA

