Regular Grammars

Definition

A Regular Grammar is a quadruple

```
G= (V,T,P,S), where
```

- 1. V is a finite set of variables (nonterminals, syntactic categories)
- 2. T is a finite set of terminals (alphabet)
- 3. P is a finite set of *productions*: rules of the forms
 - 1. $V \rightarrow \Lambda$ (λ)
 - 2. $V \rightarrow w$ (β)
 - 3. $V \rightarrow V$ (γ rules)
 - 4. $V \rightarrow W V$ (δ rules)

where $w \in T^*$

4. S, the *start symbol*, is an element of V

```
Non-terminals = [S,B]
Terminals = [a,b]
Start = S
S ->
S \rightarrow a S
S \rightarrow B
B \rightarrow b
B \rightarrow b B
```

```
Non-terminals = [S,C]
```

Terminals =
$$[a,b,c]$$

$$Start = S$$

```
Non-terminals = [A,B,C]
Terminals = [a,b]
Start = A
A \rightarrow a A
A \rightarrow a C
A \rightarrow b B
B -> a B
C -> b B
B ->
```

Derivation

- We say a grammar derives a string if
- Start with any rule whose LHS is the start symbol. Write down the RHS.
- Repeatedly, replace any Non-terminal, X, in the written down term, with rhs, where (X -> rhs) is one of the productions.
- When there are no more Non-terminals, written down term is the derived string.

Non-terminals = [S,C]
Terminals = [a,b,c]
Start = S
S -> a S
S -> b C
C ->
C -> c C

- Right-Hand-Side
- a S
- a a S
- aabC
- aabcC
- aabccC
- aabcc

- Rule
- S -> a S
- S -> a S
- S -> b C
- C -> c C
- C -> c C
- C ->

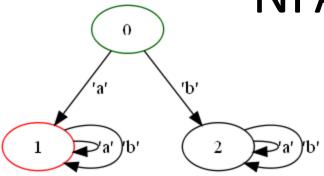
Tree Derivation

Non-terminals = [S,C] Terminals = [a,b,c] Start = S S -> a S S -> b C C -> C -> c C

Derived string

aabcc

NFA to RegGram



Non-terminals = [S0,S1,S2]

Terminals = [a,b]

Start = SO

S0 -> a S1

S0 -> b S2

S1 -> a S1

S1 -> b S1

S2 -> a S2

S2 -> b S2

S1 ->

For every transition
I -a-> J
Add a production
SI -> a SJ

For every transition $I - \Lambda -> J$ Add a production SJ ->

For every final state K
Add a production
Sj ->

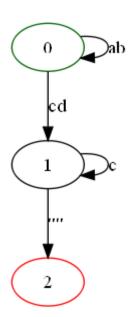
RegGram to GenNFA

Terminals = [a,b,c,d]

$$Start = S0$$

$$SO \rightarrow c d S1$$

$$S1 -> c S1$$



The non-terminal become the states, but also invent a new final state F

For each kind of prod

1.
$$V \rightarrow \Lambda$$
 (λ)

2.
$$V \rightarrow w$$
 (β)

3.
$$V \rightarrow V$$
 (γ rules)

4.
$$V \rightarrow W V$$
 (δ rules)

Add a transition

1.
$$I \rightarrow \Lambda$$
 add $I - \Lambda \rightarrow F$

2.
$$I \rightarrow w$$
 add $I \rightarrow w \rightarrow F$

3.
$$I \rightarrow w J$$
 add $I \rightarrow w \rightarrow J$

4.
$$I \rightarrow J$$
 add $I - \Lambda \rightarrow J$

Simplify GenNFA

