
Mathematical Preliminaries

• Sets are collections in which order of elements and duplication of 
elements do not matter.
– {1,a,1,1} = {a,a,a,1} = {a,1}

– Notation for membership:  1 ∈ {3,4,5} 

– Set-former notation: {x |  P(x) } is the set of all x which
– satisfy the property P.
– {x  |  x ∈ N and 2 ≥ x ≥ 5 } 
– {x ∈ N |  2 ≥ x ≥ 5 }

– Often a universe is specified. Then all sets are assumed to be subsets of 
the universe (U ), and the notation 

– {x |  P(x)} stands for {x ∈ U | P(x) }



Operations on Sets

• empty set :   ∅
• Union: A ∪ B = {x | x  ∈ A  or x ∈ B}
• Intersection: A ∩ B = {x | x ∈ A  and x ∈ B}
• Difference: A - B = {x | x∈ A   and x ∉ B}
• Complement: A =  U - A



Venn Diagrams

A
B

U



Laws

• A  ∪ A=A 
• A  ∪ B=B  ∪ A 
• A  ∪ (B  ∪ C) = (A  ∪ B) ∪ C 
• A  ∪ (B ∩ C) = (A  ∪ B) ∩ (A  ∪ C) 
• A  ∪ B= A ∩ B
• A  ∪ ∅ = A 

• A ∩ A=A
• A ∩ B =B ∩ A
• A ∩ (B ∩ C)=(A ∩ B) ∩ C 
• A ∩ (B  ∪ C)=(A ∩ B) ∪ (A ∩ C)
• A ∩ B = A ∪ B
• A ∩ ∅= ∅



Subsets and Powerset

• A is a subset of B if all elements of A are elements of B as well. 
Notation: A⊆ B.

•
• The powerset P(A) is the set whose elements are all subsets 

of A:  P(A) =  {X |  X⊆ A }.
•
• Fact. If A has n elements, then P(A) has 2n

• elements.
•
• In other words, |P(A)| = 2|A| , where |X| denotes the number 

of elements (cardinality) of X.



Proving Equality and non-equality

• To show that two sets A and B are equal, you need to do two 
proofs:
– Assume x∈ A and then prove x∈ B
– Assume x∈ B and then prove x∈ A

• Example. Prove that P(A∩ B) = P(A) ∩P(B).
• To prove that two sets A and B are not equal, you need to 

produce a counterexample : an element x that belongs to one 
of the two sets, but does not belong to the other.

• Example. Prove that P(A∪ B) ≠ P(A) ∪P(B).
• Counterexample: A={1}, B={2}, X={1,2}. The set X belongs to 

P(A∪ B), but it does not  belong to P(A) ∪ P(B).



Strings

• Strings are defined with respect to an alphabet, which is an 
arbitrary finite set of symbols. Example alphabets are {0,1} 
(binary) and ASCII.

• A string over an alphabet Σ is any finite sequence of elements 
of Σ. 

• Hello is an ASCII string; 0101011 is a binary string.

• The length of a string w is denoted |w|. The set of all strings 
of length n over Σ is denoted Σn.



More strings

• Σ0={Λ}, where Λ is the empty string (common 
to all alphabets). 

•
• Σ* is the set of all strings over Σ:
• Σ* = {Λ} ∪ Σ ∪ Σ2 ∪ Σ3 ∪ ... 
•
• Σ+ is Σ* with the empty string excluded: 
• Σ* =  Σ ∪ Σ2 ∪ Σ3 ∪ ... 



String concatenation

• If u=one and v=two then u • v=onetwo and 
• v • u=twoone. Dot is usually omitted; just write uv for u • v.
• Laws:
• u •  (v • w) = (u • v) • w
• u •  Λ = u
• Λ • u = u
• |u • v| = |u| + |v|

• The nth power of the string u is un = u • u ... u, the 
concatenation of n copies of u. 

• E.g.,  One3 = oneoneone .
• Note u0=Λ.



Can you tell the 
difference?

• There are three things that are sometimes 
confused.

Λ      − the empty string ( “” )

∅ − the empty set ( { } )

{Λ}   − the set with just the empty string as an 
element



Languages

• A language over an alphabet Σ is any subset of Σ*. That is, any 
set of strings over Σ. 

•
• Some languages over {0,1}:

– {Λ,01,0011,000111, … }

– The set of all binary representations of prime numbers: 
{10,11,101,111,1011, … }

• Some languages over ASCII:
– The set of all English words
– The set of all C programs



Language concatenation

• If L and L' are languages, their concatenation L • L' (often 
denoted LL') is the set 

• {u • v | u ∈ L  and v ∈ L‘ }. 
•
• Example.  {0,00} • {1,11} = {01,011,001,0011}.
•
• The nth power Ln of a language L is L • L ... L, n
• times. The zero power L0 is the language {Λ}, by definition. 
•
• Example. {0,00}4={04,05,06,07,08}



Kleene Star

• Elements of L* are Λ and all strings obtained 
by concatenating a finite number of strings in 
L. 
– L* = L0 ∪ L1 ∪ L2 ∪ L3 ∪ ... 
– L+ = L1 ∪ L2 ∪ L3 ∪ ... 

– Note:   L* = L+ ∪ {Λ}
• Example. {00,01,10,11}* is the language of all 

even length binary strings. 



Class Exercise

• Fill in the blanks to define some laws:

L*∪{Λ}   =  _________
L+ • {Λ}  = _________
{Λ} • {Λ} = _________
∅ • L     = _________
L* • L* = _________
(L*)* = _________
L • L* = _________
∅ * = _________
{Λ}* = _________
L • L*       = _________



Mathematical Statements

• Statements are sentences that are true or false:
– [1.] 0=3
– [2.] ab is a substring of  cba
– [3.] Every square is a rectangle

•
• Predicates are parameterized statements; they are true or 

false depending on the values of their parameters.
– [1.]   x>7   and   x<9
– [2.]   x+y=5   or   x-y=5
– [3.]   If x=y  then  x^2=y^2



Logical Connectives

• Logical connectives produce new statements 
from simple ones:
– Conjunction;   A ∧ B;      A and B
– Disjunction;    A ∨ B;      A or B
– Implication;    A ⇒ B;     if A then B
– Negation;       ¬ A          not A
– Logical equivalence; A ⇔ B
– A if and only if B
– A iff B



Quantifiers

• The universal quantifier (∀ “for every”) and the existential 
quantifier ( ∃ “there exists”) turn predicates into other predicates 
or statements.
– There exists x such that x+7=8.
– For every  x,  x+y > y.
– Every square is a rectangle.

• Example. True or false?
– (∀ x)(∀ y)  x+y=y
– (∀ x)( ∃ y)  x+y=y
– ( ∃ x)(∀ y)  x+y=y
– (∀ y)( ∃ x)  x+y=y
– ( ∃ y)(∀ x)  x+y=y
– ( ∃ x)( ∃ y) x+y=y



Proving Implications
• Most theorems are stated in the form of (universally 

quantified) implication:   if A, then B
• To prove it, we assume that A is true and proceed to derive 

the truth of B by using logical reasoning and known facts. 
• Silly Theorem. If 0=3 then 5=11.
• Proof. Assume 0=3. Then 0=6 (why?). Then 5=11 (why?). 

• Note the implicit universal quantification in theorems:
• Theorem A.  If x+7=13, then x^2=x+20.
• Theorem B. If all strings in a language  L  have even length, 

then all strings in L* have even length.



Converse

• The converse of the implication A ⇒ B is the implication B ⇒ A. It is 
quite possible that one of these implications is true, while the other 
is false. 

• E.g.,  0=1 ⇒ 1=1   is true, 
• but    1=1 ⇒ 0=1   is false. 

– Note that the implication A ⇒ B is true in all cases except when A is true 
and  B is false. 

•
• To prove an equivalence A ⇔ B, we need to prove a pair of 

converse implications: 
– (1) A⇒ B,
– (2) B⇒ A.



Contrapositive
• The contrapositive of the implication A ⇒ B is the 

implication ¬ B ⇒ ¬ A. If one of these  implications is 
true, then so is the other. It is often more convenient 
to prove the contrapositive!

• Example. If L1 and L2 are non-empty languages such 
that L1

* = L2
* then  L1=L2.

• Proof. Prove the contrapositive instead. Assume L1 ≠ 
L2. Let w be the shortest possible non-empty string that 
belongs to one of these languages and does not belong 
to the other (e.g.  w ∈ L1 and w ∉ L2). Then w ∈ L1

* and 
it remains to prove w ∉ L2

*. [Finish the proof. Why is 
the assumption that L1,L2≠ ∅ necessary?] 



Reductio ad absurdum- Proof by Contradiction

• Often, to prove A ⇒ B, we assume both A and ¬ B, 
and then proceed to derive something absurd 
(obviously non-true).

•
• Example. If L is a finite language and L • L =L, then L=∅ 

or L={Λ}.
• Proof. Assume L is finite, L • L =L, L≠ ∅ , and L≠ {Λ}. 

Let w be a string in L of maximum length. The 
assumptions imply that |w|>0. Since w2 ∈ L2, we must 
have w2 ∈ L. But |w2|=2|w|>|w|, so L contains strings 
longer than w. Contradiction. 

• qed
•



Regular Languages

• A regular language over an alphabet Σ
• { a }  where   a Є Σ  (a singleton set with a string of length 1)

• Λ      the empty string (i.e. “”)
• Φ the empty set (i.e.  { } )
• (x  U y)  The union of two regular languages
• (x . y) The concatenation of two regular 

languages
• x*   The Kleene closure of a regular language
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