Turing Machines

Intro to Turing Machines

- A Turing Machine (TM) has finite-state control (like PDA), and an infinite read-write tape. The tape serves as both input and unbounded storage device.
- The tape is divided into cells, and each cell holds one symbol from the tape alphabet.
- There is a special blank symbol B. At any instant, all but finitely many cells hold B.
- Tape head sees only one cell at any instant. The contents of this cell and the current state determine the next move of the TM.

State $=1$

Moves

- A move consists of:
- replacing the contents of the scanned cell
- repositioning of the tape head to the nearest cell on the left, or on the right
- changing the state
- The input alphabet is a subset of the tape alphabet. Initially, the tape holds a string of input symbols (the input), surrounded on both sides with in infinite sequence of blanks. The initial position of the head is at the first non-blank symbol.

Formal Definition

- A TM is a septuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$, where
- Q is a finite set of states
$-\Gamma$ is the tape alphabet, and $\Sigma \subseteq \Gamma$ is the input
$-B \in \Gamma-\Sigma$ is the blank symbol
- $\mathrm{g}_{\mathrm{a}} \in \mathrm{C}$. is the start state, and $\mathrm{F} \subseteq \mathrm{Q}$ is the set of
$-\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is a partial function. The value of $\delta(q, X)$ is either undefined, or is a triple consisting of the new state, the replacement symbol, and direction (left/right) for the head motion.

Example

- Here is a TM that checks its third symbol is 0 , accepts if so, and runs forever, if not.
- $M=(\{p, q, r, s, t\},\{0,1\},,\{0,1, B\}, p, B,\{s\})$
- $\delta(p, X)=(q, X, R)$ for $X=0,1$
- $\delta(q, X)=(r, X, R) \quad$ for $X=0,1$
- $\delta(r, 0)=(s, 0, L)$
- $\delta(r, 1)=(t, 1, R)$
- $\delta(\mathrm{t}, \mathrm{X})=(\mathrm{t}, \mathrm{X}, \mathrm{R}) \quad$ for $\mathrm{X}=0,1, \mathrm{~B}$

Transisition Diagrams for TM

- Pictures of TM can be drawn like those for PDA's. Here's the TM of the example below.

$\delta(p, X)=(q, X, R) \quad$ for $X=0,1$
$\delta(q, X)=(r, X, R) \quad$ for $X=0,1$
$\delta(r, 0)=(s, 0, L)$
$\delta(r, 1)=(t, 1, R)$
$\delta(t, X)=(t, X, R) \quad$ for $X=0,1, B$

Implicit Assumptions

- Input is placed on tape in contiguous block of cells
- All other cells are blank: 'B'
- Tape head positioned at Left of input block
- There is one start state
- The text uses a single Halt state, an alternative is to have many final states. These are equivalent, why?

Example 2: $\left\{a^{n} b^{m} \mid n, m\right.$ in Nat $\}$

$$
\begin{aligned}
& \text { states } \quad=0,1, \mathrm{H} \\
& \text { tape alphabet }=a, b, \wedge \\
& \text { input alphabet }=a, b \\
& \text { start }=0 \\
& \text { blank }={ }^{\prime}{ }^{\prime} \text { ' } \\
& \text { final }=\mathrm{H} \\
& \text { delta }=\left(0, \wedge^{\wedge}, \wedge, S, H\right) \\
& \text { (} 0, a, a, R, 0 \text {) } \\
& \text { (0,b,b,R,1) } \\
& \text { (1,b,b,R,1) } \\
& \text { (1,^, } \left.{ }^{\wedge}, \mathrm{S}, \mathrm{H}\right)
\end{aligned}
$$

Example 3: $\left\{a^{n} b^{n} c^{n} \mid n\right.$ in Nat $\}$

delta $=$

($0, a, X, R, 1$) Replace a by X and scan right
$(0, Y, Y, R, 0)$ Scan right over Y
($0, Z, Z, R, 4$) Scan right over Z, but make final check
$(0, \wedge, \wedge, S, H)$ Nothing left, so its success
($1, a, a, R, 1$) Scan right looking for b, skip over a
$(1, b, Y, R, 2)$ Replace b by y, and scan right
(1,Y,Y,R,1) scan right over Y
($2, c, Z, L, 3$) Scan right looking for c, replacxe it by Z
($2, b, b, R, 2$) scan right skipping over b
$(2, Z, Z, R, 2)$ scan right skipping over Z
$(3, a, a, L, 3)$ scan left looking for X, skipping over a
$(3, b, b, L, 3)$ scan left looking for X, skipping over b
$(3, X, X, R, 0)$ Found an X, move right one cell
$(3, Y, Y, L, 3)$ scan left over Y
(3,Z,Z,L,3) scan left over Z
($4, Z, Z, R, 4$) Scan right looking for ^^, skip over Z
$(4, \wedge, \wedge, S, H)$ Found what we're looking for, success!
tape alphabet $=a, b, c, \wedge, X, Y, Z$
input alphabet $=a, b, c$
start $=0$
blank = '^'
final $=\mathrm{H}$

Turing machines with output

- A Turing machine can compute an output by leaving an answer on the tape when it halts.
- We must specify the form of the output when the machine halts.

Adding two to a number in unary

states $\quad=0,1, \mathrm{H}$
tape alphabet $=1, \wedge$
input alphabet = 1
start $=0$
blank $={ }^{\prime}{ }^{\prime}$
final $=\mathrm{H}$
delta $=$
(0,1,1,L,0)
(0,^,1,L,1)
(1,^, $1, \mathrm{~S}, \mathrm{H})$

Adding 1 to a Binary Number

states $\quad=0,1,2, \mathrm{H}$	
tape alphabet $=1,0,{ }^{\prime}$ input alphabet $=1,0$	
start	= 0
blank	$={ }^{\prime}$ '
final	$=\mathrm{H}$
delta $=$	
(0,0,0,R,0)	
(0,1,1,R,0)	
(0,^,^,L,1)	
(1,0,1,L, 2)	
(1,1,0,L,1)	
(1,^,1,S,H)	
(2,0,0,L,2)	
(2,1,1,L,2)	
(2,^,	R,H)

states $\quad=0,1,2,3,4, \mathrm{H}$ tape alphabet $=1,0, \#, \wedge$ input alphabet = 1,0, \#

An equality Test

