Putting Laziness to Work

Why use laziness

- Laziness has lots of interesting uses
- Build cyclic structures. Finite representations of infinite data.
- Do less work, compute only those values demanded by the final result.
- Build infinite intermediate data structures and actually materialize only those parts of the structure of interest.
- Search based solutions using enumerate then test .
- Memoize or remember past results so that they don't need to be recomputed

Cyclic structures

- cycles:: [Int]
- cycles $=1: 2: 3:$ cycles

Cyclic Trees

- data Tree a = Tip a | Fork (Tree a) (Tree a)
- t2 $=$ Fork (Fork (Tip 3) (Tip 4)) (Fork (Tip 9) t2)

Mutually Cyclic

$(t 3, t 4)=($ Fork $($ Fork (Tip 11) t3) t4 Fork (Tip 21) (Fork (Tip 33) t3)

Prime numbers and infinite lists

primes :: [Integer]
primes = sieve [2..]
where sieve (p:xs) =

$$
\begin{aligned}
p: \text { sieve } & {[x \mid x<-x s} \\
& x \text { `mod` } p /=0]
\end{aligned}
$$

Dynamic Programming

- Consider the function

```
fib :: Integer -> Integer
fib \(0=1\)
fib \(1=1\)
fib \(n=f i b(n-1)+f i b(n-2)\)
LazyDemos> :set +s
LazyDemos> fib 30
1346269
(48072847 reductions, 78644372 cells, 1 garbage
    collection)
```

- takes about 9 seconds on my machine!

Why does it take so long?

- Consider (fib 6)

What if we could remember past results?

- Strategy
- Create a data structure
- Store the result for every (fib n) only if (fib n) is demanded.
- If it is ever demanded again return the result in the data structure rather than re-compute it
- Laziness is crucial
- Constant time access is also crucial
- Use of functional arrays

Lazy Arrays

import Data.Array
table $=$ array $(1,5)$

$$
\left[\left(1, a^{\prime}\right),\left(2, '^{\prime}\right),\left(3, c^{\prime}\right),\left(5, e^{\prime}\right),\left(4, d^{\prime}\right)\right]
$$

- The array is created once
- Any size array can be created
- Slots cannot be over written
- Slots are initialized by the list
- Constant access time to value stored in every slot

Taming the duplication

```
fib2 :: Integer -> Integer
fib2 z = f z
    where table \(=\operatorname{array}(0, z)[(i, f i) \mid i<-r a n g e(0, z)]\)
    f \(0=1\)
    f \(1=1\)
    f \(n=(\) table ! (n-1)) + (table ! (n-2))
```

LazyDemos> fib2 30
1346269
(4055 reductions, 5602 cells)
Result is instantaneous on my machine

Can we abstract over this pattern?

- Can we write a memo function that memoizes another function.
- Allocates an array
- Initializes the array with calls to the function
- But, We need a way to intercept recursive calls

A fixpoint operator does the trick

- fix f = f (fix f)
- g fib $0=1$
- g fib $1=1$
-g fib $n=$ fib ($\mathrm{n}-1$) + fib (n-2)
- fib1 = fix g

Generalizing

```
memo :: Ix a => (a,a) -> ((a -> b) -> a -> b) -> a -> b
memo bounds \(g=f\)
    where arrayF = array bounds
\[
f x=\operatorname{arrayF}[(n, g f n) \mid n<- \text { range bounds }]
\]
```

fib3 $n=\operatorname{memo}(0, n) g n$
fact $=\operatorname{memo}(0,100) g$
where g fact $n=$
if $n==0$ then 1 else n * fact ($n-1$)

Representing

Graphs

import ST
import qualified Data.Array as A type Vertex = Int
-- Representing graphs:
type Table a = A.Array Vertex a
type Graph = Table [Vertex]
-- Array Int [Int]

1	$[2,3]$
2	$[7,4]$
3	$[5]$
4	$[6,9,7]$
5	$[8]$
6	$[9]$
7	$[9]$
8	$[10]$
9	$[10]$
10	[]

Functions on graphs

type Vertex = Int
type Edge = (Vertex, Vertex)
vertices :: Graph -> [Vertex]
indices :: Graph -> [Int]
edges :: Graph -> [Edge]

Building

Graphs

buildG :: Bounds -> [Edge] -> Graph
graph = buildG $(1,10)$

$$
\begin{aligned}
& {[(1,2),(1,6),(2,3),} \\
& (2,5),(3,1),(3,4), \\
& (5,4),(7,8),(7,10), \\
& (8,6),(8,9),(8,10)]
\end{aligned}
$$

DFS and Forests

> data Tree $a=$ Node a (Forest $a)$ type Forest $a=[$ Tree $a]$
nodesTree (Node a f) ans = nodesForest f (a:ans)
nodesForest [] ans = ans nodesForest (t : f) ans = nodesTree t (nodesForest f ans)

- Note how any tree can be spanned
- by a Forest. The Forest is not always
- unique.

DFS

- The DFS algorithm finds a spanning forest for a graph, from a set of roots.

```
dfs :: Graph -> [Vertex] -> Forest Vertex
dfs :: Graph -> [Vertex] -> Forest Vertex
dfs g vs = prune (A.bounds g) (map (generate g) vs)
generate :: Graph -> Vertex -> Tree Vertex
generate g v = Node v (map (generate g) (g `aat`v))
```

Array indexing

Sets of nodes already visited

Pruning already visited paths

```
prune :: Bounds -> Forest Vertex -> Forest Vertex
prune bnds ts =
    runST (do { m <- mkEmpty bnds; chop m ts })
chop :: Set s -> Forest Vertex -> ST s (Forest Vertex)
chop m [] = return []
chop m (Node v ts : us)
    do { visited <- contains m v
        ; if visited
        then chop m us
        else do { include m v
            ; as <- chop m ts
            ; bs <- chop m us
            ; return(Node v as : bs)
            }
    }
```


Topological Sort

```
postorder :: Tree a -> [a]
postorder (Node a ts) = postorderF ts ++ [a]
postorderF :: Forest a -> [a]
postorderF ts = concat (map postorder ts)
postOrd :: Graph -> [Vertex]
postOrd = postorderF . Dff
dff :: Graph -> Forest Vertex
dff g = dfs g (vertices g)
```


