Environments, Stores, and
Interpreters

Overview

* As we study languages we will build small
languages that illustrate language features
 We will use two tools
— Observational semantic judgements

— Small interpreters

 These tools convey the same information at
different levels of detail.

OPERATIONAL SEMANTICS BY |NFERENCEI

To describe the machine’s operation, we give rules of inference that
state when a judgment can be derived from judgments about
sub-expressions.

The form of arule is

premises
conclusion

(Name of rule)

We can view evaluation of the program as the process of building an
inference tree.

This notation has similarities to axiomatic semantics: the notion of

derivation is essentially the same, but the content of judgments is
different.

ENVIRONMENTS AND STORES, FORMALLYI

e We write £ () means the result of looking up x in environment £. (This
notation is because an environment is like a function taking a name as
argument and returning a meaning as result.)

e We write £ + {x — v} for the environment obtained from existing
environment £ by extending it with a new binding from =z to v. If £
already has a binding for x, this new binding replaces it.

The domain of an environment, dom(FE), is the set of names bound in E.
Analogously with environments, we’ll write
e S(/) to mean the value at location [of store S

e S+ {l — v} to mean the store obtained from store S by extending (or
updating) it so that location [maps to value v.

e dom(S) for the set of locations bound in store 5.
Also, we’ll write

e S — {l} to mean the store obtained from store S by removing the
binding for location /.

PSU CS558 W13 LECTURE3 (© 1994-2013 ANDREW TOLMACH 36

EVALUATION RULES (1)'

l=FE(x) v=2S()
<‘F-Eg S) U <-'u‘_ b> (VEII')

GES) Vs

<ﬁ?1e E, S> I (1:1_ S:'> <€3E S:'> U (’132, SH>
<(+ €1 EQ),E._S> [} ('U1 + U9, S”)

(Add)

(e1, E.S) | (v1,5) [¢ dom(S")
(EQ,E + {:I? — 1'.}, S’ {Z — -1..'1}> [} <t:2, S”)
- (Local)
((local = ey e9),E.S) | (v, 8" —{I})

(e, E,S) | (v, 5") 1= FE(x)
<(:= re),E,9) | <"E.-’,S’ + {{'. —> 1:})

(Assgn)

PSU CS558 W13 LECTURE3 (© 1994-2013 ANDREW TOLMACH 37

EVALUATION RULES (2)'

<€1' E *9> ‘U’ <:U1-. 'Sf> (28] ?é O (62, E LSU> U, (?_?2. 5’”>
((if €1 €2 Eg) b, S) U <"£-‘g._ S”)

(If-nzero)

<Elf E‘ *5> ‘U' (O bf) <€3- E 5’;> ‘U’ <:E"13‘- ‘S‘H>
((if €1 €9 e3), FE, ‘v) [} <"i-‘3-. 5”)

(It-zero)

<El’ L, S> 4 <"“1- S‘r> U1 7’é 0 <€2.E, Sf> Y <"i.!2-_ SH>
((Whlle €1 fE)E SH> ‘U’ {"L’g. S!H>

((While €1 62),E, b) ‘U’ <__[__,3_ SH;)

(While-nzero)

<€]_. E L9> ‘U <0 ASYJ,)
((while e1 e2),E,S) | (0,5

(While-zero)

P5SU CS558 W13 LECTURE3 (© 1994-2013 ANDREW TOLMACH

NOTES ON THE RULESI

e The structure of the rules guarantees that at most one rule is applicable
at any point.

e The store relationships constrain the order of evaluation.

e |[f no rules are applicable, the evaluation gets stuck; this corresponds
to a runtime error in an interpreter.

We can view the interpreter for the language as implementing a bottom-up
exploration of the inference tree. A function like

Value eval(Exp e, Env env) { }

returns a value v and has side effects on a global store such that
(e,env, storepafore) I (V. store o)

The implementation of eval dispatches on the syntactic form of e,
chooses the appropriate rule, and makes recursive calls on eval
corresponding to the premises of that rule.

Question: how deep can the derivation tree get?

PSU CS5558 W13 LECTURE 3 (& 19942013 ANDREW TOLMACH 39

Interpreters

* Programs that detail the same issues as an
observational semantics

— Operations on environments and stores
e E(x)
e E+{x >V}
e Dom(E)
o S(I)
e S+{l ->v}
e Dom(S)

Values

type Addr = Int
data Value

= IntV Int -— An Int
| PairV Addr -- Or an address
—-— 1Into the heap

Tables in hw3.hs

e Tables are like dictionaries storing objects
indexed by a key.

-— A table maps keys to objects
data Table key object = Tab [(key,object)]

type Env a = Table String a -- A Table
where the key 1s a String

Lookup and Searching Tables

-—- When searching an Env one returns a Result
data Result a = Found a | NotFound

search :: Eq key => key -> [(key, a)] -> Result a
search x [] NotFound
search x ((k,v):rest) =

IT x==k then Found v else search X rest

-— Search a Table
lookUp :: Eq key => Table key a -> key -> Result a
lookUp (Tab xs) k = search k xs

Updating Tables

e Update is done by making a new changed copy

-— update a Table at a given key.
update n u ((n,v):rest)
| n==m = (m,u):rest
update n u (r:rest) = r - update n u rest
update n u [] = error
(""Unknown address: ''++show n++
" 1n update'')

Environments in hw3.hs

-—- A Table where the key 1s a String
type Env a = Table String a

—-— Operations on Env
emptyE = Tab [] -- O

extend key value (Tab xs) = -- E+{x—>v}
Tab ((key,value):xs)

-- E+{x; oV X, oV, X, oV}
push pairs (Tab xs) = Tab(pailrs ++ XS)

Stores and Heaps

* |nlanguage E3, the store is implemented by a
heap. Heaps are indexed by addresses (int)

type Heap = [Value]

—-— State contains just a Heap
data State = State Heap

-—- Access the State for the Value
-- at a given Address S(n)
access n (State heap) = heap !! n

(list ! n) is the get element at
position n. The first element
is at position O

Allocating on the heap
SH{l -»>v}

—— Allocate a new location In the heap. Intitialize i1t
-— with a value, and return i1ts Address and a new heap.

alloc :: Value -> State -> (Addr,State)
alloc value (State heap) =
(addr,State (heap ++ [value]))
where addr = length heap

Note that allocation creates a new copy of the
heap with one more location

Multiple allocations

(fun T Xy z) (+ x Yy 2)))
(@ f 35 8)

e \We need to create 3 new locations on the

heap and note where the formal parameters
(x,y,z) are stored

s Ex—>l,y—>L,z—> 1}
e S{l, >3,,—>5,;—>8})

Code

bind:: [String] -> [Value] ->
State -> ([(Vname,Addr)],State)
bind names objects state =
loop (zip names objects) state
where loop [] state = ([],state)
loop ((nm,v):more) state =
((nm,ad) :xs,statel)
where (ad,state2) = alloc v state
(xs,state3) = loop more state2

Example

bind [a,b,c]
[IntV 3,IntV 7,IntV 1]
(State [IntV 17])

e returns the pair

([(a,1),(,2),(c,3)]
, State [IntV 17,IntV 3,IntV 7,IntV 1]

)

Heap update

* Makes a new copy of the heap with a different
object at the given address.

-- Update the State at a given Adress
stateStore addr u (State heap) =
State (update addr heap)
where update 0 (x:xs) = (uU:xs)
update n (xX:xs) = x : update (n-1) xs
update n [] =
error ("'Address ''++show addr++
" too large for heap.')

Example

Allocate 1 (St [IntV 3,IntVv 7])

Returns

(2, St [IntV 3,IntV 7,IntV 1])

The interpreter

* [t implements the observational rules but has
more detail.

* |t also adds the ability to trace a computation.

interpE :: Env (Env Addr,[Vname],Exp) -- The function name space

-> Env Addr -- the variable name space
-> State -- the state, a heap

-> EXp -— the Exp to interpret

-> 10(Value,State) —— (result,new_state)

interpE funs vars state exp =
(traceG vars) run state exp where
run state (Var v) =
case lookUp vars v of

Found addr ->
return(access addr state,state)

NotFound ->
error (""'Unknown variable: "++v++" 1In lookup.')

--—- .. Many more cases

[=FE(x) v=5()
(x, E,S) | (v,S)

(Var)

Constant and assignment case

run state (Int n) = return(IntV n,state)
run state (Asgn v e) =
do { (val,state2) <- iInterpE funs vars state e
, case lookUp vars v of
Found addr ->
return(val ,stateStore addr val state2)
NotFound -> error
(C'\nUnknown variable: "++
v++'" 1In assignment.') }

(0, E.S) 1 (i,5) (Int)

(€. E,8) 4 (n,8) 1= E()
<(:= r e), . S> | <U35’F + {l — ’U})

(Assgn)

Notes on pairs

e Pairs are allocated in consecutive locations on the heap

run state (Pailr X y) =
do { (vl1l,sl) <- iInterpE funs vars state X
; (v2,s2) <- InterpE funs vars sl y
let (al,s3) = alloc vl s2
(a2,s4) = alloc v2 s3

, return(PairV al,s4)}

consecutive

al and a2 should be]
locations

Runtime checking of errors

 Numeric operations (+, *, <=, etc) only operate
on (IntV n) and must raise an error on (PairV a)

run state (Add x y) =
do { (vl,statel) <- interpE funs vars state x
; (v2,state2) <- interpE funs vars statel y
; return(numeric state2 "+" (+) vl v2,state2) }

numeric :: State -> String -> (Int -> Int -> Int) ->
Value -> Value -> Value
numeric st name fun (IntV x) (IntV y) = IntV(fun X y)
numeric st name fun (v@(PairVv)) =
error ("'First arg of "++name++
" 1s not an Int. "++showV (v,st))
numeric st name fun _ (v@(PairV)) =
error ("'Second arg of "++name++
" 1s not an Int. "++ showV (v,st))

	Environments, Stores, and Interpreters
	Overview
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Interpreters
	Values
	Tables in hw3.hs
	Lookup and Searching Tables
	Updating Tables
	Environments in hw3.hs
	Stores and Heaps
	Allocating on the heap �S+{l v}
	Multiple allocations
	Code
	Example
	Heap update
	Example
	The interpreter
	Slide Number 22
	Constant and assignment case
	Notes on pairs
	Runtime checking of errors

