
CS558 Programming Languages
Winter 2013

Lecture 6

1

VALUES AND TYPES

We divide the universe of values according to types ; a type is:

• a set of values; and

• a collection of operations defined on those values.

In practice, important to know how values are represented and how
operations are implemented on real hardware.

Examples:

Integers (represented by machine integers) with the usual arithmetic
operations (implemented by corresponding hardware instructions).

Booleans (represented by machine bits or bytes) with operators
and,or,not (implemented by hardware instructions or code sequences).

Arrays (represented by contiguous blocks of machine addresses) with
operations like fetch and update (implemented by address arithmetic and
indirect addressing).

Strings (represented how?) with operations like concatenation, substring
extraction, etc. (implemented how?)

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 2

HARDWARE TYPES

Machine language doesn’t distinguish types; all values are just bit
patterns until used . As such they can be loaded, stored, moved, etc.

But certain operations are supported directly by hardware; the operands
are thus implicitly typed.

Typical hardware types:

• Integers of various sizes, signedness, etc. with standard arithmetic
operations.

• Floating point numbers of various sizes, with standard arithmetic ops.

• Booleans with conditional branch operations.

• Pointers to values stored in memory.

• Instructions , i.e., code, which can be executed.

• Many others are possible, e.g., binary coded decimal.

Details of behavior (e.g., numeric range) are machine-dependent ,
though often subject to standards (e.g., IEEE floating point, Unicode
characters, etc.).

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 3

LANGUAGE PRIMITIVE TYPES

Primitive types of a language are those whose values cannot be further
broken down by user-defined code; they can be managed only via
operators built into the language.

Usually includes hardware types plus others that can easily mapped to a
hardware type.

Example: enumeration types are usually mapped to integers.

Numeric types only approximate behavior of true numbers. Also, they
often inherit machine-dependent aspects of machine types, causing
serious portability problems.

Example: Integer arithmetic in most languages.

Partial counterexample: Numerics in LISP.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 4

COMPOSITE TYPES

Composite types are built from existing types using type constructors .

Typical composite types include records , unions , arrays , functions , etc.

Abstractly , such type constructors can be seen as mathematical
operators on underlying sets of simpler values. A small number of set
operators suffices to describe most useful type constructors:

Cartesian product (S1 × S2)
• records, tuples, C structs

Sum or (disjoint) union (S1 ⊕ S2)
• enumerations, Pascal variant records, C unions

Mapping (S1 → S2)
• arrays, association lists, functions

In addition, we often need a way to represent recursive structures such
as lists and trees.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 5

COMPOSITE TYPE REPRESENTATION

Concretely , each language defines the internal representation of
values of the composite type, based on the type constructor and the
types used in the construction.

Example: The fields of a record might occupy successive memory
addresses (perhaps with some alignment restrictions). The total size of
the record is (roughly) the sum of the field sizes.

Often a range of representations are possible, from highly packed to
highly indirected. There’s often a tradeoff between space and access
time.

Example: Arrays of booleans can be efficiently packed using one bit per
element, but this makes it more complicated to read or set an element.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 6

STATIC TYPECHECKING

High-level languages differ from machine language in that explicit types
appear and type violations are ordinarily caught at some point.

Static typechecking is most common: FORTRAN, Algol, Pascal, C/C++,
Java, ML, etc.

• Types are associated with identifiers (esp. variables, parameters,
functions).

• Every use of an identifier can be checked for type-correctness at
compile time.

• “Well-typed programs don’t go wrong.” (If type system is sound ; often
not true.)

• Compiler can optimize generated code because it knows about value
representations.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 7

DYNAMIC TYPECHECKING

Dynamic typechecking occurs in Lisp, Scheme, Smalltalk, Python,
many other scripting languages, etc.

• Types are attached to values (usually as explicit tags).

• The type associated with an identifier can vary.

• Correctness of operations can’t (in general) be checked until runtime.

• Type violations become checked runtime errors.

• Optimized representation hard.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 8

STATIC TYPE SYSTEMS

The main goal of a type system is to characterize programs that won’t “go
wrong” at runtime.

Informally, we want to avoid programs that confuse types, e.g., by trying
to add booleans to integers, or take the square root of a string.

Formally, we can give a set of typing rules (sometimes called as static
semantics) from which we can derive typing judgments about program
fragments. (This should sound familiar!)

Each judgment has the form

TE ⊢ e : t

Intuitively this says that expression e has type t, under the assumption
that the type of each free variable in e is given by the type environment
TE.

The key point is that an expression is well-typed if-and-only-if we can
derive a typing judgment for it.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 9

TYPING RULES

Consider our usual simple imperative language (see Lecture 3), and
suppose we have just two types, Int and Bool.

We write TE(x) for the result of looking up x in TE, and TE + {x 7→ t}

for the type environment obtained from TE by extending it with a new
binding from x to t.

Here is a suitable set of typing rules:

TE(x) = t

TE ⊢ x : t
(Var)

TE ⊢ i : Int
(Int)

TE ⊢ e1 : Int TE ⊢ e2 : Int

TE ⊢ (+ e1 e2) : Int
(Add)

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 10

TYPING RULES (2)

TE ⊢ e1 : Int TE ⊢ e2 : Int

TE ⊢ (<= e1 e2) : Bool
(Leq)

TE ⊢ e1 : t1 TE + {x 7→ t1} ⊢ e2 : t2
TE ⊢ (local x e1 e2) : t2

(Local)

TE(x) = t TE ⊢ e : t

TE ⊢ (:= x e) : t
(Assgn)

TE ⊢ e1 : Bool TE ⊢ e2 : t TE ⊢ e3 : t

TE ⊢ (if e1 e2 e3) : t
(If)

TE ⊢ e1 : Bool TE ⊢ e2 : t

TE ⊢ (while e1 e2) : Int
(While)

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 11

FORMALIZING TYPE SAFETY

The typing rules are just (another) formal system in which judgments can
be derived. How do we connect this system with our slogan that
“well-typed programs don’t go wrong” ?

First we need an auxiliary judgment system assigning types to values,
written |= v : t.

For example, we would have |= i : Int for every integer i, |= true : Bool,
and |= false : Bool

We also add a special value error which does not belong to any type:
6|= error : t

We extend this notation to environments and stores, and write
|= E,S : TE

iff dom(E) = dom(TE) and |= S(E(x)) : TE(x), ∀x ∈ dom(E).

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 12

FORMALIZING TYPE SAFETY (2)

Recall our formal dynamic semantics for our language, defined using ⇓

judgments. In our previous definition, expressions corresponding to
runtime errors simply had no applicable rule (they were “stuck.”). Let’s
change the system slightly by adding new rules so that all expressions
corresponding to runtime errors evaluate to error instead.

Now, if everything has been defined correctly, we should be able to prove
a theorem roughly like this:

If TE ⊢ e : t and |= E,S : TE and 〈e, E, S〉 ⇓ 〈v, S′〉 then |= v : t.

In other words, well-typed programs evaluate to values of the expected
type; so in particular, they can’t evaluate to error, which belongs to no
type.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 13

STATIC TYPECHECKING

We can turn the typing rules into a recursive typechecking algorithm .

A typechecker is very similar to the evaluators we have already built:

• it is parameterized by a type environment;

• it dispatches according to the syntax of the expression being checked
(note that there is exactly one rule for each form);

• it calls itself recursively on sub-expressions;

• it returns a type.

There are some differences, though. For example, a typechecker always
examines both arms of a conditional (not just one). If we consider a
language with functions , the typechecker processes the body of each
function only once, no matter how many times the function is called.

Note that most languages require the types of function parameters and
return values to be declared explicitly. The typechecker can use this
declaration to check that applications of the function are correctly typed,
and separately checks that the body of the function is correctly typed.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 14

FLEXIBILITY OF DYNAMIC TYPECHECKING

Static typechecking offers the great advantage of catching errors early ,
and generally supports more efficient execution.

Why ever consider dynamic typechecking?

• Simplicity. For short or simple programs, it’s nice to avoid the need for
declaring the types of identifiers.

• Flexibility. Static typechecking is inherently more conservative about
what programs it admits.

For example, suppose function f happens to always return false. Then

(if f() then "a" else 2) + 2

will never cause a runtime type error, but it will still be rejected by a static
type system.

Perhaps more usefully, dynamic typing allows container data structures,
to contain mixtures of values of arbitrary types, like this list:

[2; true; 3.14]

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 15

TYPE INFERENCE

Some statically-typed languages, like OCaml, offer alternative ways to
approach these goals, via type inference and polymorphic typing .

Type inference works like this:

• The types of identifiers are automatically inferred from the way they are
used .

• The programmer is no longer required to declare the types of identifiers
(although this is still permitted).

• Requires that the types of operators and literals are known.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 16

INFERENCE EXAMPLES

(Assume just int and bool as base types.)

let f x = x + 2

in f y

end

The type of x must be int because it is used as an arg to +. So the type
of f must be int -> int, and y must be an int.

let f x = [x]

in f true

end

Suppose x has some type t. Then the type of f must be t -> t list.
Since f is applied to a bool, we must have t = bool.

(For the moment, we’re assuming the f must be given a unique
monomorphic type; in real ML, this isn’t true...)

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 17

SYSTEMATIC INFERENCE

A harder example:

let f x = if x then p else q

in 1 + (f r)

end

Can only infer types by looking at both the function’s body and its
applications.

In general, we can solve the inference task by extracting a collection of
typing constraints from the program’s AST, and then finding a
simultaneous solution for the constraints using unification .

Extract constraints that tell us how types must be related if we are to be
able to find a typing derivation. Each node generates one or more
constraints.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 18

INFERENCE FOR ML-LIKE FUNCTIONS

We can rewrite the example slightly as

let f = fun x -> if x then p else q

in 1 + (f r)

end

We’ll need some extra type judgment rules:

TE + {x 7→ t1} ⊢ e : t2
TE ⊢ fun x -> e : t1 → t2

(Fn)

TE ⊢ e1 : t1 → t2 TE ⊢ e2 : t1
TE ⊢ e1e2 : t2

(Appl)

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 19

INFERENCE EXAMPLE

fun(x) +

x p q

APPL

f r

1IF

LET(f)
1

2 7

3

4 5 6

8 9

10 11

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 20

SOLVING INFERENCE CONSTRAINTS

Node Rule Constraints

1 Let tf = t2 t1 = t7

2 Fun t2 = tx → t3

3 If t4 = bool t3 = t5 = t6

4 Var t4 = tx

5 Var t5 = tp

6 Var t5 = tq

7 Add t7 = t8 = t9 = int

8 Int t8 = int

9 Appl t10 = t11 → t9

10 Var t10 = tf

11 Var t11 = tr

Solution : t1 = t7 = t8 = t9 = t3 = t5 = tp = t6 = tq = int

t4 = tx = t11 = tr = bool t2 = tf = t10 = bool → int

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 21

DRAWBACKS OF INFERENCE

Consider this variant program:

let f x = if x then p else false

in 1 + (f r)

end

Now the body of f return type bool, but it is used in a context expecting
an int.

The corresponding extracted constraints will be inconsistent ; no solution
can be found. Can report this to the programmer.

But which is wrong, the definition of f or the use? Doesn’t really work to
associate the error message with a single program point. (In general,
may need to consider an arbitrarily long chain of program points.)

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 22

POLYMORPHISM

Consider

let head l = match l with x::xs -> x in

head [1;2;3]

By extracting the constraints as above, and solving, we will conclude that
head has type int list → int.

It is also perfectly sensible to write:

let head l = match l with x::xs -> x in

head [true;false;true]

giving head the type bool list → bool. Note that the definition of head
hasn’t changed at all!

So reasonable to ask: why can’t we write something like:

let head l = match l with x::xs -> x in

(head [true;false;true],

head [1;2;3])

Can do this if we treat the type of head as polymorphic .

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 23

PARAMETRIC POLYMORPHISM

By default OCaml infers the most polymorphic possible type for every
function. In this case, it would give head the type ’a list → ’a, where
’a (pronounced “alpha”) is implicitly universally quantified. Each use of
head occurs at a particular instance of ’a (first at bool, then at int).

This is called parametric polymorphism because the function definition
is (implicitly) parameterized by the instantiating type.

In this model, the behavior of the polymorphic function is independent
of the instantiating type. In fact, an Ocaml compiler typically generates
just one piece of object code for each polymorphic function, shared by all
instances. (More later.) An alternative is to generate type-specific
versions of the code for each different instance.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 24

PARAMETRIC POLYMORPHISM VS . OVERLOADING

Most languages provide some form of overloading , where the same
symbol means different things depending on the types to which it is
applied. E.g., overloading of arithmetic operators to work on either
integers or reals is very common.

Aim is to do “what we expect;” rules can get quite complicated (especially
when coercions are considered) !

Some languages (e.g., Ada, C++) support user-defined overloading,
normally for user-defined types (e.g. complex numbers).

In conventional languages, overloading is resolved statically ; that is, the
compiler selects the appropriate version of the operator once and for all
at compiler time. (Different from object-oriented dynamic overriding; more
later.)

Overloading is sometimes called “ad-hoc polymorphism” . It is
fundamentally different from parametric polymorphism, because the
implementation of the overloaded operator changes according to the
underlying types.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 25

ML TYPES

ML has a well-conceived set of basic type constructs. (OCaml adds
some more controversial extensions.)

• Primitives: unit, int, float, char, string, exn, array, ...

• Product (record or tuple) types (t1 × t2):

type emp = string * int (tuple: unlabeled fields)
let x : emp = ("abc",3)

type emp =

{name: string; age: int} (record: labeled fields)
let x : emp = {name="abc";age=3}

Tuple (but not record) values may be written without declaring an explicit
named type first.

• Functions: t1 -> t2

All functions take just one argument; the effect of multi-argument
functions can be obtained by passing a product or by Currying.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 26

USER-DEFINED TYPES

ML’s type mechanism can be used to define many different useful types.

• Each type declaration defines a new type and specifies its data
constructors (which take 0 or more arguments).

• Value of the type are taken apart using pattern matching in a case
statement or function declaration.

Sums (t1 ⊕ t2)

type temp = F of float

| C of float

let boiling (t:temp) : bool =

match t with

F r -> r >= 212.0

| C r -> r >= 100.0

Can combine match into anonymous function definition, e.g.

let boiling = function

| F r -> r >= 212.0

| C r -> r >= 100.0

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 27

DATATYPES (2)

Recursive types

type inttree = Branch of inttree * inttree

| Leaf of int

let rec sumleaves = function

Leaf i -> i

| Branch(l,r) -> (sumleaves l) + (sumleaves r)

Parameterized type constructors (polymorphic types)

type ’a bintree = Branch of ’a bintree * ’a bintree

| Leaf of ’a

let rec depth = function

Leaf _ -> 0

| Branch(l,r) -> max (depth l) (depth r) + 1

type inttree = int bintree

type booltree = bool bintree

(Type ’a list is just a special case of a parameterized type constructor,
with extra syntactic sugar for writing literals.)

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 28

DATATYPES (3)

Enumerations

type day =

Mon | Tue | Wed | Thu | Fri | Sat | Sun

let weekday (d:day) : bool =

match d with

Sat -> false

| Sun -> false

| _ -> true

(Type bool is just a special case of an enumeration.)

Singleton types

type complexR = CR of float * float

type complexP = CP of float * float

let convert (CP (r,theta)) =

CR(r *. (cos theta),r *. (sin theta))

let x : complexR = CR(1.0,-1.0)

... convert x ... (* STATIC TYPE ERROR ! *)

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 29

TYPE ABBREVIATIONS

Ocaml also has type abbreviations , which are also introduced by type

declarations. These simply serve to give convenient names to possibly
lengthy types.

type t = int * bool (* note: no constructor name *)

let x : t = (2,true)

let f ((a:int),(b:bool)) = ...

... f x ... (* TYPE-CHECKS FINE *)

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 30

REPRESENTATION

Basic representation idea for user-defined datatypes: each value is
represented boxed, more specifically as a two-element record, containing
a tag field and a contents field (which may itself be a record).

Example: Trees

type tree = Leaf of int

| Tree of tree * tree

Leaf(x)
✲ 0 x

Tree(y,z) ✲ 1

❄

y z

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 31

REPRESENTATION EXAMPLE

Tree(Leaf(11),Tree(Leaf(22),Leaf(33)))

✲ 1

❄

❄ ❄

0 11 1

❄

❄ ❄

0 22 0 33

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 32

STANDARD REPRESENTATION OPTIMIZATIONS

The above scheme is not very efficient for important special classes of
datatypes, so in practice certain optimizations are used.

• Nullary constructors (like enumeration values) are represented as
unboxed small integers.

• List values are represented without internal indirections:

[11,22,33]
✲ 11

❄

22

❄

33 0

Every value still occupies just one word (boxed or unboxed) This is an
example of uniform data representation . ML implementations usually
use this representation (although they are not required to). This makes it
particularly easy to generate code for polymorphic functions.

PSU CS558 W’13 LECTURE 6 c© 1994–2013 ANDREW TOLMACH 33

