
CS558 Programming Languages
Winter 2013

Lecture 7

1

ABSTRACT DATA TYPES

Can the user define genuinely new types with the same status as the
built-in types?

Ideally, to mimic the behavior of built-in types, user-defined types should
have an associated set of operators , and it should only be possible to
manipulate types via their operators (and maybe a few generic operators
such as assignment or equality testing).

In particular, when new types are given a representation in terms of
existing types, it shouldn’t be possible for programs to inspect or change
the fields of the representation.

Such a type is called an abstract data type (ADT), because to clients
(users) of the type, its implementation is hidden.

We can implement an ADT by combining a type definition together with a
set of function operating on the type into a module (or package , cluster ,
class , etc.) Additional hiding features are needed to make the type’s
representation more-or-less invisible outside the module.

Purely functional operators yield simpler and more elegant ADTs.

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 2

EXAMPLE : ENVIRONMENTS IN OCAML

module type ENV =

sig

type env

val empty : env

val extend : env -> string -> int -> env

val lookup : env -> string -> int option

end

module Env : ENV =

struct

type env = (string * int) list

let empty = []

let extend env k v = (k,v)::env

let rec lookup env k =

match env with

| (k0,v0)::rest ->

if k = k0 then Some v0 else lookup rest k

| [] -> None

end (* Env *)

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 3

ALGEBRAIC SPECIFICATION

If clients are to be able to use an ADT without knowing anything about
the implementation, they need a full specification of the operations’
behavior.

Type signatures give only a partial specification.

A standard approach is to add axioms describing the behavior of different
combinations of axioms. Example:

ADT env

Signatures:

empty : env

extend : env -> key -> value -> env

lookup : env -> key -> value option

Axioms:

lookup empty k0 = None

lookup (extend e k v) k0 =

if k = k0 then Some v else lookup e k0

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 4



ANOTHER EXAMPLE

ADT set

Signatures:

empty : set

insert : set -> elem -> set

union : set -> set -> set

member : set -> elem -> bool

Axioms: ...

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 5

CHOOSING AXIOMS

How many axioms are enough?

We can identify two important subsets of operations:

• constructors return new instances of the ADT.

• observers (or inspectors ) take one or more instances of the ADT as
arguments and return some other type(s) as result.

Example: for the Env ADT, the constructors are empty and extend; the
sole observer is lookup.

The only way to create an ADT value is to call a constructor. So every
ADT value can be built up inductively by applying constructors.

The only aspect of an ADT value that matters is how it behaves when
passed to an observer. (We can’t tell anything else about the value!)

So, it suffices if we give enough axioms to define the behavior of every
observer on every possible combination of constructors.

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 6

IMPLEMENTATIONS FROM AXIOMS

It turns out that we can often use the axioms to build an implementation
‘for free.” The idea is to represent each value of the ADT by the sequence
of constructors used to build it.

The resulting implementation may not be very efficient, but it can be
useful for prototyping...

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 7

EXAMPLE

module Env : ENV =

struct

type env =

Empty

| Extend of env * string * int

let empty = Empty

let extend e k v = Extend(e,k,v)

let rec lookup e0 k0 =

match e0 with

| Empty -> None

| Extend(e,k,v) ->

if k = k0 then Some v else lookup e k0

end (* Env *)

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 8



OBSERVATIONAL EQUIVALENCE

We can use the axioms to prove the observational equivalence of two
ADT values, even in cases where the representations of the values are
different!

Example: suppose we have

e1 = extend (extend empty "a" 1) "b" 2

e2 = extend (extend empty "b" 2) "a" 1

Using the axioms, we can prove that, for any key k,

lookup e1 k = lookup e2 k

Hence e1 and e2 are observationally equivalent, even though they may
have different representations (e.g. in the implementations we gave).

In conventional languages, axioms only have the status of comments .
So reasoning using observational equivalence is dangerous unless we
have proved that the actual implementation obeys the axioms; we can
imagine systems that checked (or helped us check) this.

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 9

INTERFACE VS . IMPLEMENTATION

Ideally, the client of an ADT is not supposed to know or care about its
internal implementation details – only about its exported interface .
Thus, it makes sense to separate the textual description of the interface
from that of the implementation, e.g., into separate files.

For example, OCaml distinguishes module types (module specifications,
or signatures) from modules (module bodies, or structures), and
encourages them to be in separate files. Specifications give the names of
types, and the names and types of functions in the package. Bodies give
the definitions of the types and functions mentioned in the specification,
and possibly additional private definitions.

One advantage of this separation is that clients of module X can be
compiled on the basis of the information in the specification of X, without
needing access to the the body of X (which might not even exist yet!)

Many languages, particularly in the C/C++ tradition, don’t make this
separation very cleanly. Java doesn’t support it cleanly either, even given
the notion of interfaces (constructors are one sticking point).

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 10

IS ABSTRACTION ALWAYS DESIRABLE ?

Although the idea of defining explicitly all the operators for a type makes
good logical sense, it can get quite inconvenient.

Programmers expect to assign values or pass them as arguments
without writing type-specific code for doing so. They may also expect to
be able to compare them, at least for equality, without writing
type-specific code.

So most languages that support ADT’s have built-in support for these
basic operations, defined in a uniform way across all types. They also
usually have facilities for overriding the built-in definitions with
type-specific versions. (Some of the complexity of C++ derives from this.)

Unfortunately, it is impossible to generate code for operations that move
or compare data without knowing things like the size and layout of the
data. But these are characteristics of the type’s implementation , not its
interface. So these “universal” operations break the abstraction barrier
around types, and conflicts with separate compilation.

One common, but slightly inefficient, solution is to box all abstract types.

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 11

MODULES IN GENERAL

An ADT is one particular kind of module , containing:

• a single abstract type, with its representation;

• a collection of operators, with their implementations.

More generally, modules might contain:

• multiple type definitions;

• arbitrary collections of functions (not necessarily abstract operators on
the type);

• variables;

• constants;

• exceptions; etc.

Primary purpose is to divide large programs into (somewhat)
independent sections, offering separate namespaces an abstraction
barrier, and perhaps separate compilation .

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 12



MODULES IN OCAML

OCaml module definitions are called structures . By default, a structure
exports all its components, and does not need a specified interface (since
its component types can be inferred.)

module Machine =

struct

open Stack (* avoid dot notation *)

type prog = ...

let progToString instrs = ...

let exec instrs = ...

end

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 13

MODULE INTERFACES IN ML

OCaml module types are called signatures . Signatures can be attached
to structures, but can also be separately named and manipulated, without
reference to any particular structure.

module type MACH =

sig

type prog (* details hidden *)

val exec : prog -> int

end

The same structure can be viewed through multiple signatures. For ex-
ample, a structure can be defined without an explicit signature but later be
thinned by a signature to form a more private structure.

module LimitedMachine : MACH = Machine

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 14

MODULES IN OTHER LANGUAGES

Many languages provide one or more mechanisms for name space
management. Terminology varies widely, e.g.:

• Python modules , which define separate namespaces, are associated
with files. Hierarchical names spaces (sub-modules) can be defined
using packages .

• Java packages define namespaces. It is also common to use classes
to group together related (static) definitions.

• C files can be used to define a primitive form of namespace: static
declarations are not visible outside the file. But all names exported from
all files in the program occupy one global name space.

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 15

POLYMORPHISM REVISITED

Goal: Avoid writing the same code twice (while maintaining type safety
and efficiency).

• Simplest case is parametric polymorphism , where behavior of the
code is essentially the same regardless of the types being manipulated.
Example: polymorphic functions in ML.

• Harder case is ad-hoc polymorphism , where behavior of the code
differs significantly depending on the types being manipulated.

Classic example: sorting. It makes sense to use the same sort algorithm
on many different types of data (e.g., integers, reals, strings, etc.),
provided they have a defined ordering.

But need to parameterize on type of elements and on comparison
function to use on elements.

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 16



PARAMETERIZATION IN C

One approach is to make the comparison function an argument to sort, as
with the C library quicksort function:

SYNOPSIS

void qsort (void *base, int nmemb, int size,

int (*compar) (const void *,const void *));

EXAMPLE

static int intcompare(int *i,int *j) { return *i - *j; }

main() {

int a[10];

...

qsort(a,10,sizeof(int),intcompare);

...

}

Note: Not type safe!

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 17

PARAMETERIZATION IN OCAML

If our language supports first-class functions, a better approach is to write
a function that takes the comparison test as an argument and returns a
specialized sorting function

let mksort (le : ’a -> ’a -> bool) : (’a list -> ’a list) =

let rec sort = function

| [] -> []

| h::t -> insert h (sort t)

and insert x = function

| [] -> [x]

| h::t -> if le h x then h::(insert x t) else x::h::t in

sort

let le_pair (x:int*int) (y:int*int) : bool =

fst x * snd x <= fst y * snd y

let sort_pairs : (int*int) list -> (int*int) list = mksort le_pair

let l = sort_pairs [(1,2);(3,0);(8,9)]

This extends (but only awkwardly) to situations where we want to
generate several functions based on the same functional parameter
(e.g., operations on sets with a certain notion of equality).

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 18

PARAMETERIZED MODULES

Really want a way to have parameterized modules over types and
operators.

Most typed languages that support polymorphism at all do so only at the
module/class level. Here we always need to parameterize polymorphic
algorithms by type, and maybe operators too.

Examples: Ada generic packages , C++ templates , OCaml functors .

We can often think of a parameterized module as a client of some
service provided by the parameter. Note that this gives us a way to
typecheck and maybe even compile the client code before having an
implementation of the service at all.

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 19

OCAML FUNCTORS EXAMPLE

module type SorterArg =

sig

type t

val le: t -> t -> bool

end

module Sorter(SA:SorterArg) : sig

type t = SA.t

val sort : t list -> t list

end =

struct

type t = SA.t

let rec sort = function

| [] -> []

| h::t -> insert h (sort t)

and insert x = function

| [] -> [x]

| h::t -> if SA.le h x then h::(insert x t) else x::h::t

end

module PairsSorter = Sorter(struct

type t = int * int

let le = le_pair

end)

PairsSorter.sort [(1,2);(3,0);(8,9)]

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 20



COMPILATION MODELS FOR POLYMORPHISM

Generic behavior can’t come for free!

Example: How can a generic sort function deal with an array whose
entries are of arbitrary size?

In C, programmer must pass the size explicitly!

• Inefficient; doesn’t generalize.

There are two general approaches to compiler-generated generics.

In Ada, C++, and .NET, completely separate code is generated for each
instance of a generic (no code is generated for the definition itself).

• Each separate instance “knows” the size and layout of all the type
parameters, and the implementation of all the operators, and can be
compiled just like ordinary code, and runs as efficiently.

• But if generics are used heavily, there may be a “code explosion.”

With Ada generics, programmers must explicitly instantiate a generic at
the specific instances of interest; with C++ templates, instantiation is
supposed to be done automatically by the compiler.

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 21

COMPILATION MODELS (CONT.)

A different approach, often used in ML, is to have just one copy of
polymorphic or functorized code.

• Represent all data objects by a single word; if the object is larger than a
word, it is boxed (stored in the heap and represented by a pointer).

• Identical machine code can work on any instance of a polymorphic type.

• Approach extends to functors: one copy of the code can be generated
for a functor definition ; no code is generated when the functor is
instantiated.

• Supports genuine separate compilation in the top-down-development
example.

• Polymorphic and functorized code still runs as efficiently as ordinary
code, and there’s no fear of code explosion.

• But ordinary code may run more slowly than in Ada or C++ because of
more indirect pointers. So some ML implementations have been moving
towards a code specialization approach to improve performance.

PSU CS558 W’13 LECTURE 7 c© 1994–2013 ANDREW TOLMACH 22


