
CS558 Programming Languages
Winter 2013

Lecture 8

1

OBJECT-ORIENTED PROGRAMMING

Object-oriented programs are structured in terms of objects : collections
of variables (“fields ”) and functions (“methods ”).

OOP is particularly appropriate for programs that model discrete
real-world processes for simulation or interaction. Idea: one program
object corresponds to each real-world object. But OOP can be used for
any programming task.

Key characteristics of OOP:

• Dynamic Dispatch

• Encapsulation

• Subtyping

• Inheritance

Important OO Languages: Simula 67, Smalltalk, C++, Java, C#,
JavaScript, Python, Ruby, ...

Differences among languages: Are there static types? Are there
classes ? Are all values objects?

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 2

PROCEDURAL VS . OO PROGRAMMING

The fundamental control structure in OOP is function call, similar to
ordinary procedural programming, but:

• In most OO languages, there is a superficial syntactic difference: each
function defined for an object takes the object itself as an implicit argu-
ment.

s.add(x) ; OO style

Set.add(s,x) ; procedural style

• Corresponding change in metaphor : instead of applying functions to
values, we talk of “sending messages to objects.”

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 3

DYNAMIC METHOD DISPATCH

A more important difference is that in OOP, the receiving object itself
controls how each message is processed. E.g., the effect of s.add can
change depending on exactly which object is bound to s. This is a form of
dynamic overloading .

Example:

s1 = empty ordered-list-set

s2 = empty balanced-tree-set

if ... then s = s1 else s = s2

s.add(42)

The implementation of the add method is completely different in s1 and
s2; choice of which runs is determined at runtime.

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 4

CLASSES

In OOP, we typically want to create multiple objects having the same
structure (field and method names).

In most OO languages this is done by defining a class , which is a kind of
template from which new objects can be created.

• Different instances of the class will typically have different field values,
but all will share the same method implementations.

• Classes are not essential; there are some successful OO languages
(e.g. JavaScript) in which new objects are created by cloning existing
prototype objects.

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 5

CLASSES VS . ADT’ S

Class definitions are much like Abstract Data Type (ADT) definitions.

• In particular, objects often (though not always) designed so that their
data fields can only be accessed by the object’s own methods. This kind
of encapsulation is just what ADT’s offer.

• Using encapsulation makes it possible to change the representation or
implementation of an object without affecting client code that interacts
with the object only via method calls. This helps support modular
development of large programs.

• Unfortunately, OO programmers often violate encapsulation policies.
(For example, object fields may be public , allowing them to be accessed
from code outside of methods.)

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 6

TWO K INDS OF INHERITANCE

Often classes share strong similarities, either in their external
specifications or in their internal implementations , or both.

OO languages typically allow us to declare one class to be a subclass of
another. The subclass is said to inherit from its superclass . Subclassing
is a transitive relationship, which leads to an inheritance hierarchy .

Subclassing can be used to describe both specification and
implementation inheritance, which often causes confusion.

Specification inheritance is relevant where one class provides the
same methods and fields as another, in particular when the objects of
one class conceptually form a subset of the objects of the other.

Implementation inheritance is relevant where the method
implementations of two classes are similar. To avoid having to write the
code twice, we might like to inherit most of the implementation of one
class from the other, possibly making just a few alterations.

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 7

SPECIFICATION INHERITANCE

Specification inheritance occurs naturally when we model concepts that
already form a hierarchy.

• For example, in a GUI, we might manipulate “lines,” “text,” and
“bitmaps,” all of which are conceptually a specialized kind of “display
object.” (We might say that “a line is a display object.”) Thus all should
respond appropriately to messages like “display yourself” or “translate
your screen origin.”

• Key idea is principle of safe substitution : if the specification of B
inherits from the specification of A, we should be able to use a B instance
wherever an A instance is wanted. (Not vice-versa, since B’s may be able
to do things that A’s cannot.) This is sometimes called “simulation.”

• In a statically typed language where classes are types, this form of
inheritance is called subtyping .

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 8

SPECIFICATION INHERITANCE EXAMPLE

Uniform manipulation of heterogeneous collections .

class Displayable(): # this is just documentation

pass

class Line(Displayable):

def __init__(self,x0,y0,x1,y1):

self.x0 = x0 # first endpoint

self.y0 = y0

self.x1 = x1 # second endpoint

self.y1 = y1

def translate(self,delta_x,delta_y):

self.x0 = self.x0 + delta_x

self.y0 = self.y0 + delta_y

self.x1 = self.x1 + delta_x

self.y1 = self.y1 + delta_y

def draw(self):

moveto(self.x0,self.y0)

drawto(self.x1,self.y1)

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 9

class Text(Displayable):

def __init__(self,x,y,s):

self.x = x # origin of text

self.y = y

self.s = s # contents of text

def translate(self,delta_x,delta_y):

self.x = self.x + delta_x

self.y = self.y + delta_y

def draw(self):

moveto(self.x,self.y)

write(self.s)

a tuple of various Displayables

v = (Line(0,0,10,10), Text(5,5,"Hello"))

for d in v:

d.translate(3,4)

d.draw()

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 10

INHERITING IMPLEMENTATION

Inheritance of implementations is about code re-use: we can write code
just once (in a super-class) and use it in all the subclasses.

• This works nicely when the inheriting class also inherits the
specification of the providing class.

• But note: Sometimes we’d like B to inherit implementation from A even
when the conceptual object represented by B is not a specialization of
that represented by A; i.e. B is not really a subtype of A. More later.

• In any case, we may need to do some refactoring in order to maximize
code re-use.

Example revisited, handling translation task in the superclass code...

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 11

class Displayable():

def __init__(self,x0,y0):

self.x0 = x0 # coordinates of object origin

self.y0 = y0

def translate(self,delta_x,delta_y):

self.x0 = self.x0 + delta_x

self.y0 = self.y0 + delta_y

class Line(Displayable):

def __init__(self,x0,y0,x1,y1):

super().__init__(x0,y0) # first endpoint

self.delta_x = x1 - x0 # vector to second endpoint

self.delta_y = y1 - y0

def draw(self):

moveto(self.x0,self.y0)

drawto(self.x0 + self.delta_x,self.y0 + self.delta_y)

class Text(Displayable):

def __init__(self,x,y,s):

super().__init__(x,y)

self.s = s # contents of text

def draw(self):

moveto(self.x0,self.y0)

write(self.s)

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 12

EXTENSION WITHOUT CODE CHANGE

In the course of a lengthy development project, we often want to extend
an existing program with new features, changing existing code as little as
possible. We can try to do this by adding a new object class that inherits
most of its functionality from an existing class, but implements its own
distinctive features.

The key idea here is that calls are always dynamically dispatched to
the original receiving object, so that superclass code can access
functionality defined in the subclasses .

(In C++, dynamic dispatch is only used for methods declared as virtual ;
in most OO languages it is true for all methods by default.)

Example: Consider adding a translate and draw function for all display
objects. Although this function is defined in the superclass, the draw code
it invokes lives in the subclasses.

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 13

EXAMPLE
class Displayable():

def __init__(self,x0,y0):

self.x0 = x0 # coordinates of object origin

self.y0 = y0

def translate(self,delta_x,delta_y):

self.x0 = self.x0 + delta_x

self.y0 = self.y0 + delta_y

def translate_and_draw(self,delta_x,delta_y):

self.translate(delta_x,delta_y)

self.draw()

...

v = (Line(0,0,10,10), Text(5,5,"Hello"))

for d in v:

d.translate_and_draw(3,4)

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 14

OVERRIDING IN SUBCLASSES

Sometimes we want a new subclass to override the implementation of a
superclass function. Again, the rule that all internal messages go to the
original receiver is essential here, to make sure most-specific version of
code gets invoked.

Example: Add new bitmap object, with its own version of
translate, which scales the argument.

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 15

class Bitmap(Displayable):

def __init__(self,x0,y0,sc,bits):

super().__init__(x0 * sc,y0 * sc)

self.sc = sc

self.bits = bits

def translate(self,delta_x,delta_y):

self.x0 = self.x0 + self.sc * delta_x

self.y0 = self.y0 + self.sc * delta_y

def draw(self):

moveto(self.x0,self.y0)

blit(self.bits)

Another way to implement translate is to invoke the super-class method
explicitly:

def translate(self,delta_x,delta_y):

super().translate(self.sc * delta_x, self.sc * delta_y)

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 16

SUBCLASSING : SPECIFICATION VS . IMPLEMENTATION

Often we’d like to use inheritance for both specification and
impelementation — but the subclassing structure we want for these
purposes may be different.

For example, suppose we want to define a class DisplayGroup whose
objects are collections of Displayables that can be translated or drawn
as a unit. We want to be able to insert and manipulate the elements of a
group just as for objects of the Python library class list, using append,
del, etc.

For specification inheritance purposes, our group class should clearly be
a subclass of Displayable, but for implementation inheritance purposes,
it would be very convenient to make it a subclass of list.

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 17

MULTIPLE INHERITANCE EXAMPLE

Some languages, like Python, permit multiple inheritance to handle this
situation:

class DisplayGroup(Displayable,list):

def translate(self, delta_x, delta_y):

for d in self:

d.translate(delta_x,delta_y)

def draw(self):

for d in self:

d.draw()

d = DisplayGroup(50,50)

d.append(Line(0,0,10,10))

d.insert(0,Line(20,20,40,40))

d.reverse()

d.translate_and_draw(3,4)

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 18

ALTERNATIVE APPROACHES

Multiple inheritance introduces semantic complications and poses some
implementation challenges, so many OO languages support it in only
limited ways or not at all.

For example, Java has only single inheritance, but it also has a notion of
interfaces ; these are like class descriptions with no fields or method
implementations at all, and are just the thing for describing specifications.

• If we implemented our example in Java, we might treat Displayable as
an interface and make DisplayGroup a subclass of (only) Vector (the
Java library equivalent of list).

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 19

REPRESENTATION OF OBJECTS

In an naive interpreted implementation, each object is represented by a
heap-allocated record, containing

• Name and values of each instance field.

• Pointer to class description record.

Each class is represented by a (essentially static) record with:

• Name and code pointer for each class method.

• Pointer to super-class’s record.

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 20

EXAMPLE

(based on the code from slides 12 and 16)

Bitmap object

translate

draw

drawdraw

translate

class Line class Text

Line object Line object Text object

x0

y0

del_x

del_y

x0

y0

del_x

del_y

x0

y0

s

x0

y0

sc

bits

code ptr code ptr code ptr

code ptr

code ptr

class Object

class DisplayObject

class Bitmap

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 21

INTERPRETED IMPLEMENTATION OF OPERATIONS

To perform a message send (function call) at runtime, the interpreter
does a method lookup, starting from the receiver object, as follows:

• Use class pointer to find class description record.

• Search for method in class record. If found, invoke it; otherwise,
continue search in superclass record.

• If no method found, issue “Message Not Understood” or similar error.
(Can’t happen if language is statically typed.)

Instance fields are accessed in the object record; self always points to
the receiver object record; and super always points to the superclass.

Can obviously improve on this naive scheme by caching results of
searches; works well when the same methods are called repeatedly.

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 22

EFFICIENT IMPLEMENTATION

How about “compiling” OO languages?

Dynamic binding makes compilation difficult:

• method code doesn’t know the precise class to which the object it is
manipulating belongs,

• nor the precise method that will execute when it sends a message.

Instance fields are not so hard.

• Code that refers to instance fields of a given class will actually operate
on objects of that class or of a subclass.

• Since a subclass always extends the set of instance variables defined
in its superclass, compiler can consistently assign each instance variable
a fixed (static) offset in the object record; this offset will be the same in
every object record for that class and any of its subclasses.

• Compiled methods can then reference variables by offset rather than by
name, just like ordinary record field offsets.

(But multiple inheritance systems require more work.)

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 23

COMPILATION (CONT.)

Handling message sends is harder, because methods can be overridden
by subclasses.

Simple approach: keep a per-class static method table (or vtable) and
“compile” message sends into indirect jumps through fixed offsets in this
table.

Example: Classes in our example code all have this vtable structure:

(offset 0) | draw code ptr. |

(offset 1) | translate code ptr.|

These tables can get large, and much of their contents will be duplicated
between a class and its superclasses. Still, this approach is used by
many compiled languages including C++, Java. (Again, multiple
inheritance – and Java interfaces – cause complications.)

PSU CS558 W’13 LECTURE 8 c© 1994–2013 ANDREW TOLMACH 24

