Patterns of Reducability

Turing computable functions

 A function Σ* → Σ* is a computable function if some Turing Machine M, in every input w, halts with just f(w) on its tape.

Polynomial time function

A function f: Σ* → Σ* is a polynomial time computable function if some polynomial time TM, M, exists that halts with just F(w) on its tape, when started on any input w.

Mapping reducability

• A language A is mapping reducable to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every $w \in \Sigma^*$,

$$w \in A \Leftrightarrow F(w) \in B$$

Polynomial time reducability

• A language, A, is polynomial time mapping reducible (or simply polynomial time reducible) to a language, B, written $A \leq_p B$, if a polynomial time computable function $f: : \Sigma^* \to \Sigma^*$ exists, where for every w,

$w\in A \iff f(w)\in B$

• The function f is called the polynomial time reduction of A to B

Decidability Theorems

1. A \leq_m B and B is decidable then A is decidable

2. $A \leq_m B$ and A is undecidable, then B is undecidable

Recognizability Theorems

 A ≤_m B and B is Turing recognizable then A is Turing recognizable

A ≤_m B and A is not Turing recognizable then B is not Turing recognizable

– Typically we let A be \underline{A}_{TM} the complement of A_{TM}

Definition

- A language B is NP-complete if it satisfies 2 conditions
 - 1. B is n NP, and
 - 2. Every A in NP is polynomial time reducable to B Forall $A \in NP \cdot A \leq_p B$

P or NP-complete Theorems

• To show a language is in P

 $-A \leq_{p} B$ and $B \in P$ then $A \in P$

- To Show a language is NP-complete
 - If B is NP-complete and B \leq_p C, for C \in NP, then C in NP-complete
 - The most common "B" is the language boolean satifiability