Reducability

Sipser, pages 187-214

Reduction

- Reduction encodes (transforms) one problem as a second problem.
- A solution to the second, can be transformed into a solution to the first.
- We expect both transformations (problem1 \rightarrow problem2, and solution2 \rightarrow solution1) to be computable.

Properties of Reduction

1. If A reduces to B, and B is decidable, then A must also be decidable, since a solution to B provides a solution to A .
2. If A reduces to B, and A is undecidable, then B must also be undecidable. If B were not undecidable, than we could use the solution to B to decide A (a contradiction since A is undecidable).

$\mathrm{HALT}_{T M}$ is undecidable

- By reduction of $A_{T M}$ to $\operatorname{HALT}_{T M}$ we will show that $\mathrm{HALT}_{T M}$ is undecidable
- $\operatorname{HALT}_{T M}=\{\langle M, w\rangle \mid M$ is a TM and M halts on string $w\}$
- Proof by contradiction
- Assume there exists a TM R that decides $\mathrm{HALT}_{\text {TM }}$
- Construct TM S that decides $\mathrm{A}_{\text {TM }}$
- We know $\mathrm{A}_{\text {TM }}$ is undecidable, so this is a contradiction
- Thus R cannot exist, so $\mathrm{HALT}_{\text {TM }}$ is undecidable

The construction of S (using R)

- $\mathrm{S}=$
- On input <M, w>, run R on input <M,w>
- If R rejects $(M(w)$ does not halt) then reject
- If R accepts ($M(w)$ does halt) then
- Simulate M on w until it halts.
- If M has accepted then S accepts, else S rejects

Strategy

- This strategy for proving a language, L, undecidable
- Reduce a known undecidable problem to a machine that decides L
- Is the preferred method for proving undecidability
- The most common target is $\mathrm{A}_{T M}$
- We proved $\mathrm{A}_{\text {тм }}$ undecidable by diagonalization.
- As we find new undecidable languages we have more targets for reduction.

E_{TM} is undecidable

- Testing if a TM only accepts the empty language is undecidable.
- Proof by reduction to A_{TM}
- Proof by contradiction
- Assume there exists a TM R that decides $\mathrm{E}_{\text {TM }}$
- Construct a TM S that decides $\mathrm{A}_{T M}$
- We know $\mathrm{A}_{\text {тм }}$ is undecidable, so this is a contradiction
- Thus R cannot exist, so $\mathrm{E}_{\text {TM }}$ is undecidable

S solves $A_{T M}$

- $\mathrm{S}(\langle\mathrm{M}, \mathrm{w}\rangle)=$
- Construct a modified version of M
$-M_{1}(x)=$
- if $\mathrm{x} \neq \mathrm{w}$ then reject.
- If $x=w$, then simulate M on x, and accept if M does
- M_{1} accepts x only if $x=w$, and M accepts w.
- At most, M_{1} accepts one string.
- Run R on $<M_{1}>$ (decide if M_{1} accepts only the empty language).
- If R accepts, then S rejects
- if R rejects, then S accepts.
- if R rejects, then M_{1} accepts some string β, but M_{1} only accepts β if $\beta=w$ and M accepts β, so M must accept β which must equal w).

Regular $_{\text {TM }}$ is undecidable

- Testing if a Language recognized by TM can be recognized by a simpler language mechanism, regular expressions (or DFAs, NFAs, etc)
- Proof by reduction to A_{TM}
- Proof by contradiction
- Assume there exists a TM R that decides Regular ${ }_{\text {TM }}$
- Construct a TM S that decides $\mathrm{A}_{T M}$
- We know $\mathrm{A}_{T M}$ is undecidable, so this is a contradiction
- Thus R cannot exist, so Regular $_{\text {TM }}$ is undecidable

We show how to reduce ATM to Regular TM

- Construct S , that solves ATM, but relies on R to do so.
- $S(\langle M, w\rangle)=$... R ...
- We need a special Turing machine: $\mathrm{H}(\mathrm{x})$ which recognizes a regular language (Σ^{*}), if M accepts w , and recognizes an CF-Language ($0^{n} 1^{n}$) if it rejects w.
$-H(x)=$
- if x has form $0^{n} 1^{n}$ then $H(x)$ accepts
- If x does not have this form, if $M(w)$ accepts then $H(x)$ accepts, if $\mathrm{M}(\mathrm{w})$ rejects, then $\mathrm{H}(\mathrm{x})$ rejects

Use H to define S which decides $A_{T M}$

- $S(<M, w>)=$ where M is a TM, w is a string
- Run R on input < H>
- If R accepts, then S accepts, if F rejects, then S rejects
- Recall that R decides if H recognizes a Regular language, but H recognizes Σ^{*} only if M decides w, Thus S decides $A_{T M}$, a known undecidable problem

$E Q_{\text {TM }}$ is undecidable

- Testing if two Languages, both recognized by Turing Machines, both accept the same language.
- Proof by reduction to $\mathrm{E}_{T M}$
- All our other proofs gave been by reduction to $\mathrm{A}_{T M}$, but this example lets us use another known undecidable language, E_{TM}, that decides if a language is the empty language.
- Proof by contradiction
- Assume there exists a TM R that decides $\mathrm{EQ}_{T M}$
- Construct a TM S that decides $\mathrm{E}_{\text {TM }}$
- We know $E_{T M}$ is undecidable, so this is a contradiction
- Thus R cannot exist, so $\mathrm{EQ}_{\text {тм }}$ is undecidable

Construction of S

- Assume R decides $E Q_{T M}$, Construct S that decides E_{TM}.
- $\mathrm{S}(<\mathrm{M}>)=$
- Run R on input $<M, M_{1}>$, where M_{1} is a TM that rejects all inputs.
- If R accepts, then S accepts, if R rejects, then S rejects

If R decides $\mathrm{EQ}_{\text {TM }}$ then S decides $\mathrm{E}_{\text {TM }}$, which is known to be undecidable, a contradiction.

Computation History

- Recall a configuration (ID) has the form $\alpha q \beta$
- where $\alpha, \beta \in \Gamma^{*}$ and $q \in Q$.
- The string α represents the tape contents to the left of the head.
- The string β represents the non-blank tape contents to the right of the head, including the currently scanned cell.
- q represents the current state
- Recall configurations $\mathrm{c}_{1}, \mathrm{c}_{2}$ are related by
$-\mathrm{c}_{1} \mid-\mathrm{c}_{2}$
- If the TM can legally move from c_{1} to c_{2}
- A computation history $\left(c_{1}, \ldots, c_{n}\right)$ is a sequence of \mid - related configurations (each $c_{i} \mid-c_{i+1}$)

Accepting (rejecting) Histories

- A computation history $\left(c_{1}, \ldots, c_{n}\right)$ is called an accepting history if c_{1} is a start configuration and c_{n} is an accepting configuration
- A computation history $\left(c_{1}, \ldots, c_{n}\right)$ is called an rejecting history if c_{1} is a start configuration and c_{n} is an rejecting configuration

If a TM does not halt on a given input, there does not exist an accepting (rejecting) history.
What about non-deterministic TMs?

Linear Bounded Automaton (LBA)

- An LBA is a restricted kind of TM
- Here the tape is restricted to the size of the input
- That is there is no infinite set of "Blank" symbols to the right of the input.
- We can stretch the amount of space available on the tape to a (constant * size of the input), by using extended alphabets.

LBA are quite powerful

- Language recognized by LBA include
- $A_{\text {DFA }}$
- $\mathrm{A}_{\text {CFG }}$
$-E_{\text {DFA }}$
$-E_{\text {CFG }}$
- Surpisingly $\mathrm{A}_{\text {LBA }}$ is decidable
- $\{\langle\mathrm{M}, \mathrm{w}\rangle \mid \mathrm{M}$ is an LBA that accepts string w$\}$

Lemma: Bound on number of configurations

- Let M be an LBA, with q states, and g Tape alphabet symbols, and a tape of size n
- There are exactly qng ${ }^{n}$ possible configurations
- Recall configuration has form α q β
- For a tape of size n, there are exactly n places where the we can place the q.
- There are g^{n} possible strings on the tape

$\mathrm{A}_{\text {LBA }}$ is decidable

- Let S be a TM that decides $\mathrm{A}_{\text {LBA }}$. We construct S as follows.
- $S(<M, w\rangle)=$ where M is α LBA, and w is a string
- We must be careful, M might loop on w
- If its loops it must go through some configuration more than once.
- Keep a history of the configurations.
- Since there is a bounded number of configurations, call it B, any history longer than B must be looping

Constructing S

- $\mathrm{S}(<\mathrm{M}, \mathrm{w}\rangle)=\quad$ where M is a LBA, and w is a string
- Simulate M on w for B steps or until it halts
- If M has halted in an accepting state, S accepts
- If M has halted in a rejecting state, S rejects
- If M has not halted, it must be in loop, so S rejects

Key ideas

- $\mathrm{A}_{\text {TM }}$ is undecidable
- $A_{\text {LBA }}$ is decidable
- Other problems on LBAs remain undecidable
- We use the configuration histories as a tool.

$\mathrm{E}_{\text {LBA }}$ is undecidable

- $E_{\text {LBA }}$ decides if a LBA accepts the empty language
- Proof by contradiction
- Assume $E_{L B A}$ is decidable and then show $A_{T M}$ must be decidable leading to a contradiction
- We use the familiar strategy:
$\left.-A_{T M}(<M, W\rangle\right)=$
- We create a particular LBA, B, that depends upon w, and use $E_{L B A}$ to test B for emptiness.

Constructing B from M and w

- If M accepts w then there exists (c_{1}, \ldots, c_{n})

1. if c_{1} is a start configuration and
2. c_{n} is an accepting configuration
3. Each consecutive pair $\mathrm{c}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}+1}$ are related $\mathrm{c}_{\mathrm{i}} \mid-\mathrm{c}_{\mathrm{i}+1}$ by the transition function for M

- $\left.B\left(<\left(c_{1}, \ldots, c_{n}\right)\right\rangle\right)=$ accept if $\left(c_{1}, \ldots, c_{n}\right)$ is an accepting configuration history of M for w .
- Encoding $<\left(c_{1}, \ldots, c_{n}\right)>$ on the LBA tape
- $\left\langle c_{1}\right\rangle \#\left\langle c_{2}\right\rangle \#$... \# < $\left.c_{n}\right\rangle$
- Encode each configuration, and separate by \#

B uses M and w

- $\mathrm{B}\left(<\mathrm{c}_{1}>\#<\mathrm{c}_{2}>\#\right.$... $\left.\left.\#<\mathrm{c}_{\mathrm{n}}\right\rangle\right)=$

1. Test if c_{1} is a start configuration of M and $w\left(q_{0} w_{1} w_{2} \ldots w_{n}\right)$ AND
2. c_{n} is an accepting configuration ($\mathrm{q}_{\text {accept }} \alpha$)
3. Each consecutive pair c_{i}, c_{i+1} are related $c_{i} \mid-c_{i+1}$ by the transition function for M

- $\mathrm{A}_{\text {TM }}(<\mathrm{M}, \mathrm{w}>)=$
- For a given M and w construct B as show above.
- Use $E_{\text {LBA }}$ to test B
- if it accepts we know B accepts no strings, so no accepting history for w can exist, so $\mathrm{A}_{T M}$ should reject.
- If it rejects we know there is at least one accepting configuration history for w , so $\mathrm{A}_{T M}$ should accept.

Using configuration histories

- We can use accepting and rejecting configuration histories do prove things about machines other than LBA

$A L_{\text {CFG }}$ is undeciadable

- $\mathrm{ALL}_{\text {CFG }}$ decides if a CFG accepts all strings.
- Proof by contradiction
- Assume ALL $_{\text {CFG }}$ is decidable and then show $A_{T M}$ must be decidable leading to a contradiction
- We use the familiar strategy:
$-A_{T M}(<M, w>)=$
- We create a particular CFG that depends upon w

Strategy

- Create a CFG G that generates all strings iff M does not accept w.
- So if M does accept w, there must be some strings that G doesn't generate. We arrange for these strings to be strings of accepting computation histories for w under M. I.e. the CFG G in this case generates all strings that are not accepting computation histories.

The Turing machine

- $\left.\quad A_{T M}(<M, w\rangle\right)=$
- For the particular w, create a CFG, G, such that G does not generate the accepting computation configuration history for w, but generates all other strings of configurations.
- Use $\mathrm{ALL}_{\mathrm{CFG}}$ to test G
- if it accepts we know G generates all strings, so there can be no accepting configuration for w, so A_{TM} should reject.
- If it rejects we know there is at least one accepting configuration history, so $\mathrm{A}_{\text {TM }}$ should accept.
- $A_{T M}$ is not decidable, so our assumption that $\mathrm{ALL}_{\mathrm{CFG}}$ is decidable must be wrong.
- How do we define G?

Accepting configuration histories as languages

- $\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right)$ is called an accepting history

1. if c_{1} is a start configuration and
2. c_{n} is an accepting configuration
3. Each consecutive pair c_{i}, c_{i+1} are related $c_{i} \mid-c_{i+1}$ by the transition function for M

Such a sequence is a string, and the configurations that are accepting form a language (a set of strings) and a CFG could be designed to generate such a language.

Failure to be accepting

- $\left(c_{1}, \ldots, c_{n}\right)$ is called an accepting history

1. if c_{1} is a start configuration And
2. $\quad c_{n}$ is an accepting configuration And
3. Each consecutive pair c_{i}, c_{i+1} are related $c_{i} \mid-c_{i+1}$ by the transition function for M

- $\left(c_{1}, \ldots, c_{n}\right)$ fails to be accepting when

1. c_{1} is a not start configuration $O R$
2. c_{n} is not an accepting configuration $O R$
3. some consecutive pair $\mathrm{c}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}+1}$ is not related $\mathrm{c}_{\mathrm{i}} \mid-\mathrm{c}_{\mathrm{i}+1}$ by the transition function for M

Design a PDA

- All CFG can be converted into PDA
- A PDA can be converted into a TM
- We don't care about how efficient the TM is, we are not going to run it. We are going to let the (nonexistent) $\mathrm{ALL}_{\mathrm{CFG}} \mathrm{TM}$ analyze it.
- The machine has three steps

1. c_{1} is a not start configuration $O R$
2. c_{n} is not an accepting configuration $O R$
3. some consecutive pair c_{i}, c_{i+1} is not related $c_{i} \mid-c_{i+1}$ by the transition function for M

- See the text for one strategy for the design of the TM emulating the PDA.

Post correspondence Problems

- The post correspondence problem looks for a solution to a simple game.
- Given a set of "dominos" like

- Can one arrange the dominoes, side by side, such that the strings formed by concatenating top square and bottom square strings are the same.
- One can use each domino 0 or more times

a	b	ca	a	abc
$a b$	ca	a	ab	C

abcaaabc abcaaabc

For some set of dominos, no matches may be possible

Why are no matches possible here?
$P C P=\{\langle P\rangle \mid P$ is an instance of the
Post correspondence problem with a match \}

PCP is undecidable

PCP is undecidable

- Proof by contradiction
- Assume PCP is decidable
- Then build a TM for $\mathrm{A}_{T M}$ that uses PCP
- Given TM, M, and string, w, strategy depends upon finding an configuration accepting history for w. We show that such a history can be encoded as a PCP game
- l.e. we define a set of dominos, and if that set has a match, then the match would give an accepting configuration history for w, thus deciding $A_{T M}$ which is known to be undecidable, leading to a contradiction.

The TM machine

- $\mathrm{A}_{\text {TM }}(<\mathrm{M}, \mathrm{w}>)=$
- Create a particular PCP game , p, from M and w such that a match for p is an accepting configuration history for w under M.
- Use PCP to solve p
- If p is solvable, then the match is an accepting configuration history for w, so $A_{T M}$ accepts
- If p is insolvable, then $A_{T M}$ rejects
- How do we create p?

Technical details

1. We need M to never attempt to move its head of the left hand side of the tape.
2. We can construct M^{\prime} with this property where M^{\prime} accepts the same strings as M .
3. If $w=\varepsilon$ we use a special symbol of the alphabet \sqcup to represent ε.
4. We modify the PCP game to require that the match starts with the first domino in the set.

Constructing P

- Recall $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$
- We construct the dominos of P in seven parts.
- Each part place dominos that "simulate" some part of finding an accepting configuration history.

Step 1

1. Put

$\#$
$\# \mathrm{q}_{0} \mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}$

As the first domino in the set. This forces the game to start with the initial configuration

Its clear we'll need more dominos that extend the top box of the domino if we are ever to find a match.

Step 2 - moving the head to the right

- For every $a, b \in \Gamma$, and
- every $r, q \in Q \quad$ (where $q \neq q_{\text {reject }}$)
- If $\delta(q, a)=(r, b, R)$

- Into the set of dominos

Step 3 - moving the head to the left

- For every a,b,c $\in \Gamma$, and
- every $r, q \in Q \quad$ (where $q \neq q_{\text {reject }}$)
- If $\delta(q, a)=(r, b, L)$

- Into the set of dominos

Step 4 - cells not adjacent to the head

- For every $\mathrm{a} \in \Gamma$
- put

- Into the set of dominoes

Step 5 - handling the markers (\#)

- Put

- Into the set of dominos

Step 6 - catching up on accept

- For every $\mathrm{a} \in \Gamma$
- Put

- Into the set of dominos

Step 7 - cleaning up

- Add

- To the set of dominos

How does it work

- Each step towards acceptance supports only the addition of a single domino.
- Thus every accepting path leads to a match
- If there are no accepting paths, then the last cleanup steps are never possible so the top remains too short, and no match can be found.

Turing computable functions

- A function $\Sigma^{*} \rightarrow \Sigma^{*}$ is a computable function if some Turing Machine M, in every input w, halts with just $f(w)$ on its tape.
- Some computable functions
- Arithmetic functions like +, *, -, /, mod, etc.
- Turing Machine description transformations
- $F(M)=M^{\prime}$ where M^{\prime} accepts the same strings a M but never tries to move its head of the left end of the tape

Mapping reducability

- A language A is mapping reducable to language B, written $A \leq_{m} B$, if there is a computable function $\mathrm{f}: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every $w \in \Sigma^{*}$,

$$
w \in A \Leftrightarrow F(w) \in B
$$

- Mapping reducability creates a way to formally describe how to convert a question in A into a question in B

Unsurprising Theorems
 Sipser page 208

1. $A \leq_{m} B$ and B is decidable then A is decidable
2. $A \leq_{m} B$ and A is undecidable, then B is undecidable

Old theorems in a new light

- $\mathrm{HALT}_{\text {TM }}$
- Post correspondence
- E_{TM}

$\mathrm{HALT}_{\text {TM }}$

- Find a computable function f such that
- $\mathrm{A}_{\text {TM }} \leq_{f} \mathrm{HALT}_{T M}$
- $\left.A_{T M}(<M, w\rangle\right)=$ accept iff $\operatorname{HALT}_{\text {TM }}\left(<\mathrm{M}^{\prime}, \mathrm{w}^{\prime}>\right)=$ accept
- Where $f<M, w>=\left\langle M^{\prime}, w^{\prime}>\right.$
- $\mathrm{f}<\mathrm{M}, \mathrm{w}>=$
- create $M^{\prime}\langle x\rangle=$ run M on x
- If M accepts then M^{\prime} accepts
- If M rejects, enter a loop
- F returns $<M^{\prime}, w>$

$\mathrm{A} \leq_{m} \mathrm{~B}$ and Turing Recognizability

- $A \leq_{m} B$ and B is Turing recognizable then A is Turing recognizable
- $A \leq_{m} B$ and A is not Turing recognizable then B is not Turing recognizable
- Typically we let A be $\underline{A}_{\underline{I M}}$ the complement of $\mathrm{A}_{T M}$

Two ways to show not Turing recognizable

1. $A_{I M} \leq_{m} B$ to show B is not Turing recognizable, by the second theorem on previous page
2. Because $A \leq_{m} B$ \& $\underline{A} \leq_{m} \underline{B}$ mean the same 1. Because of the definition of mapping reducability, $F(A)=$ problem in B $F(\underline{A})=$ problem in \underline{B}
3. Thus can also use $A_{T M} \leq_{m} \underline{B}$ to show B is not Turing recognizable.

$E Q_{T M}$ is neither Turing recognizable or co-Turing recognizable

- We must show two things

1. $E Q_{T M}$ is not Turing recognizable
2. The complement of $\mathrm{EQ}_{\mathrm{TM}},{\underline{E} \mathrm{E}_{\mathrm{IM}} \text {, is not Turing }}$ recognizable

Part 1: $\mathrm{EQ}_{\text {TM }}$ is not Turing recognizable

- Use the second method
- Show $\mathrm{A}_{T M} \leq_{m} \underline{E Q}_{\underline{T M}}$
- The reducing function $\mathrm{F}=$
- On input <M,w> construct the $2 \mathrm{TMs} \mathrm{M}_{1}$ and M_{2}

1. $M_{1}(x)$ on any input, x, reject
2. $M_{2}(x)$ run M on w, if it accepts, accept

- Output <M1,M2>
- Note M1 and M2 are equivalent only if M accepts w

Part 2: $\mathrm{EQ}_{\text {TM }}$ is not Turing recognizable

- Use the second method
- Show $\underline{A}_{\underline{T M}} \leq_{m} \underline{E Q}_{\underline{T M}}$ which is the same as

$$
\mathrm{A}_{\mathrm{TM}} \leq \leq_{\mathrm{m}} \mathrm{EQ}_{\mathrm{TM}}
$$

- The reducing function $\mathrm{G}=$
- On input <M, w> construct the 2 TMs M_{1} and M_{2}

1. $\mathrm{M}_{1}(\mathrm{x})$ on any input, x , accept
2. $M_{2}(x)$ run M on w, if it accepts, accept

- Output < M1,M2>
- Note that M_{1} and M_{2} agree only if M accepts w
done

Example $\left\{a^{n} b^{m} \mid n, m \geq 0\right\}$ on the string "aab"

$\#$	Oa	0a	Ob	$0 \sqcup$
\#Oaab	a0	a0	b1	$\sqcup 1$

