
Reducability 

Sipser, pages 187 - 214 



Reduction 

• Reduction encodes (transforms) one problem 
as a second problem. 

• A solution to the second, can be transformed 
into a solution to the first. 
 

• We expect both transformations (problem1 → 
problem2, and solution2 →  solution1) to be 
computable. 



Properties of Reduction 

1. If A reduces to B, and B is decidable, then A 
must also be decidable, since a solution to B 
provides a solution to A. 
 

2. If A reduces to B, and A is undecidable, then 
B must also be undecidable.  If B were not 
undecidable, than we could use the solution 
to B to decide A (a contradiction since A is 
undecidable). 
 



HALTTM is undecidable 

• By reduction of ATM to HALTTM we will show that 
HALTTM  is undecidable 
 

• HALTTM  =  { <M,w> | M is a TM  and M halts on string w } 
 

• Proof by contradiction 
• Assume there exists a TM R that decides HALTTM 

• Construct  TM  S that decides ATM 

• We know ATM is undecidable, so this is a contradiction 
• Thus  R cannot  exist, so HALTTM is undecidable 

 
 

 
 



The construction of S (using R) 

• S =  
– On input <M,w>, run R on input <M,w> 
– If R rejects (M(w) does not halt)  then reject 
– If R accepts (M(w) does halt) then  
– Simulate M on w until it halts. 
– If M has accepted then S accepts, else S rejects 



Strategy 

• This strategy for proving a language, L, 
undecidable 
– Reduce a known undecidable problem to a machine 

that  decides L 
 

• Is the preferred method for proving 
undecidability 

• The most common target is ATM 
– We proved ATM undecidable by diagonalization. 

• As we find new undecidable languages we have 
more targets for reduction. 



ETM is undecidable 

• Testing if a TM only accepts the empty 
language is undecidable. 

• Proof by reduction to  ATM 
 
 

• Proof by contradiction 
• Assume there exists a TM R that decides ETM 

• Construct  a TM  S that decides ATM 

• We know ATM is undecidable, so this is a contradiction 
• Thus  R cannot exist, so ETM is undecidable 

 



S   solves  ATM 
• S(<M,w>) =  
• Construct a modified version of M 

– M1(x) =  
• if x ≠w then reject. 
• If x=w, then simulate M on x, and accept if M does 
• M1 accepts x only if x=w, and M accepts w. 
• At most, M1 accepts one string.  

• Run R on <M1>  (decide if M1 accepts only the empty 
language). 

• If R accepts, then S rejects 
• if R rejects, then S accepts.    
• if R rejects, then M1 accepts some string β, but M1 only 

accepts β if β =w and M accepts β, so M must accept β 
which must equal w).  



RegularTM is undecidable 

• Testing if a Language recognized by TM can be 
recognized by a simpler language mechanism, 
regular expressions (or DFAs, NFAs, etc) 

• Proof by reduction to  ATM 
 
 

• Proof by contradiction 
• Assume there exists a TM R that decides RegularTM 
• Construct  a TM  S that decides ATM 
• We know ATM is undecidable, so this is a contradiction 
• Thus  R cannot exist, so RegularTM is undecidable 

 



We show how to reduce ATM to RegularTM 

• Construct S, that solves ATM, but relies on R to do 
so. 

• S(<M,w>) = … R … 
• We need a special Turing machine: H(x) which 

recognizes a regular language (Σ*), if M accepts 
w, and recognizes an CF-Language (0n1n) if it 
rejects w. 
– H(x) = 

•  if x has form 0n1n then H(x) accepts 
• If x does not have this form,  if M(w) accepts then H(x) 

accepts, if M(w) rejects, then H(x) rejects 



Use H to define S which decides ATM 

• S(<M,w>) =             where M is a TM, w is a string 

– Run R on input <H> 
– If R accepts, then S accepts, if F rejects, then S 

rejects 
 

• Recall that R decides if H recognizes a Regular 
language, but H recognizes  Σ* only if M 
decides w, Thus S decides ATM, a known 
undecidable problem 



EQTM is undecidable 
• Testing if  two Languages, both recognized by Turing 

Machines,  both accept the same language. 
• Proof by reduction to  ETM 

– All our other proofs gave been by reduction to ATM , but this 
example lets us use another known undecidable language, 
ETM, that decides if a language is the empty language. 

 
 

• Proof by contradiction 
• Assume there exists a TM R that decides EQTM 
• Construct  a TM  S that decides ETM 
• We know ETM is undecidable, so this is a contradiction 
• Thus  R cannot exist, so EQTM is undecidable 

 



Construction of S 

• Assume R decides EQTM, Construct S that decides 
ETM.  

• S(<M>)  = 
– Run R on input <M,M1>, where M1 is a TM that rejects 

all inputs. 
– If R accepts, then S accepts, if R rejects, then S rejects 

 
If R decides EQTM then S decides ETM, which is known to be 

undecidable, a contradiction. 



Computation History 

• Recall a configuration (ID) has the form  α q β  
– where  α, β ∈ Γ* and q ∈ Q.  
– The string  α  represents the tape contents to the left 

of the head.  
– The string  β  represents the non-blank tape contents 

to the right of the head, including the  currently 
scanned cell. 

– q represents the current state 
 

• Recall configurations c1,c2 are related by   
– c1 |- c2 
– If the TM can legally move from c1 to c2 

 
• A computation history (c1, … , cn) is a sequence of  

|- related configurations (each ci |-  ci+1 ) 



Accepting (rejecting) Histories 
• A computation history (c1, … , cn) is called an 

accepting history if c1 is a start configuration and 
cn is an accepting configuration 
 

• A computation history (c1, … , cn) is called an 
rejecting history if c1 is a start configuration and 
cn is an rejecting configuration 
 

If a TM does not halt on a given input, there does 
not exist an accepting (rejecting) history. 

What about non-deterministic TMs? 

 



Linear Bounded Automaton (LBA) 

• An LBA is a restricted kind of TM 
• Here the tape is restricted to the size of the 

input 
• That is there is no infinite set of “Blank” 

symbols to the right of the input. 
 

• We can stretch the amount of space available 
on the tape to a (constant * size of the input), 
by using extended alphabets. 



LBA are quite powerful 

• Language recognized by LBA include 
– ADFA 

– ACFG 

– EDFA 

– ECFG 
 
 

• Surpisingly ALBA is decidable 
• { <M,w> | M is an LBA that accepts string w } 



Lemma: Bound on number of configurations 

• Let M be an LBA, with q states, and g Tape 
alphabet symbols, and a tape of size n 

• There are exactly qngn possible configurations 
 

• Recall   configuration has form α q β   
• For a tape of size n, there are exactly n places 

where the we can place the q. 
• There are gn possible strings on the tape 



ALBA is decidable 

• Let S be a TM that decides ALBA. We construct S as 
follows.   

• S(<M,w>) =           where M is a LBA, and w is a string 

 
• We must be careful, M might loop on w 
• If its loops it must go through some configuration more 

than once. 
• Keep a history of the configurations. 
• Since there is a bounded number of configurations, call 

it B, any history longer than B must be looping 
 



Constructing S 

• S(<M,w>) =           where M is a LBA, and w is a string 

– Simulate M on w for B steps or until it halts 
– If M has halted in an accepting state, S accepts 
– If M has halted in a rejecting state, S rejects 
– If M has not halted, it must be in loop, so S rejects 



Key ideas 

• ATM is undecidable 
 

• ALBA is decidable 
 

• Other problems on LBAs remain undecidable 
• We use the configuration histories as a tool. 



ELBA is undecidable 

• ELBA  decides if a LBA accepts the empty language 
• Proof by contradiction 

– Assume ELBA  is decidable and then show ATM must be 
decidable leading to a contradiction 
 

• We use the familiar strategy:  
– ATM (<M,w>) =  
– We create a particular LBA, B, that depends upon w, 

and use ELBA  to test B for emptiness. 
 

 



Constructing B from M and w 

• If M accepts w then there exists (c1, … , cn) 
1. if c1 is a start configuration and  
2. cn is an accepting configuration 
3. Each consecutive pair ci , ci+1 are related  ci |-  ci+1  by the transition 

function for M 

• B(<(c1, … , cn)>)  = accept if (c1, … , cn)  is an 
accepting configuration history of M for w. 

• Encoding   <(c1, … , cn)> on the LBA tape 
• <c1>  # <c2> #   …     #  <cn > 
• Encode each configuration, and separate by # 



B uses M and w 

• B(<c1>  # <c2> #   …     #  <cn >)= 
1. Test if c1 is a start configuration of M and w ( q0w1 w2 … wn)  AND 
2. cn is an accepting configuration (qaccept α ) 
3. Each consecutive pair ci , ci+1 are related  ci |-  ci+1  by the transition 

function for M 
 

• ATM (<M,w>) =  
– For a given M and w construct B as show above. 
– Use ELBA  to test B 

• if it accepts we know B accepts no strings, so no accepting 
history for w can exist,  so ATM  should reject. 

• If it rejects we know there is at least one accepting 
configuration history for w, so ATM should accept. 



Using configuration histories 

• We can use accepting and rejecting 
configuration histories do prove things about 
machines other than LBA 
 



ALLCFG is undeciadable 

• ALLCFG  decides if a CFG accepts all strings. 
• Proof by contradiction 

– Assume ALLCFG  is decidable and then show ATM 
must be decidable leading to a contradiction 
 

• We use the familiar strategy:  
– ATM (<M,w>) =  
– We create a particular CFG that depends upon w 

 



Strategy 

• Create a CFG G that generates all strings iff M 
does not accept w. 
 

• So if M does accept w, there must be some 
strings  that G doesn’t generate. We arrange for 
these strings to be strings of accepting 
computation histories for w under M.  I.e. the 
CFG G in this case generates all strings that are 
not accepting computation histories. 

•   



The Turing machine 
• ATM (<M,w>) =  

– For the particular w, create a CFG, G, such that G does not 
generate the accepting computation configuration history 
for w, but generates all other strings of configurations. 

– Use ALLCFG to test G 
• if it accepts we know G generates all strings, so there can be no 

accepting configuration for w, so ATM should reject. 
• If it rejects we know there is at least one accepting configuration 

history, so ATM should accept. 
 

• ATM is not decidable, so our assumption that ALLCFG is 
decidable must be wrong. 

• How do we define G? 



Accepting configuration histories as languages 

• (c1, … , cn) is called an accepting history  
1. if c1 is a start configuration and  
2. cn is an accepting configuration 
3. Each consecutive pair ci , ci+1 are related  ci |-  ci+1  by 

the transition function for M 
 
Such a sequence is a string, and the configurations 

that are accepting form a language (a set of 
strings) and a CFG could be designed to 
generate such a language. 

 



Failure to be accepting 

• (c1, … , cn) is called an accepting history  
1. if c1 is a start configuration    And 
2. cn is an accepting configuration    And 
3. Each consecutive pair ci , ci+1 are related  ci |-  ci+1  by the transition function 

for M 
 

• (c1, … , cn) fails to be accepting when 
1. c1 is a not start configuration    OR  
2. cn is not an accepting configuration  OR 
3. some consecutive pair ci , ci+1  is not  related  ci |-  ci+1  by the transition 

function for M 

 
 
 



Design a PDA  

• All CFG can be converted into PDA 
• A PDA can be converted into a TM 
• We don’t care about how efficient the TM is, we are 

not going to run it. We are going to let the (non-
existent) ALLCFG TM analyze it. 
 

• The machine has three steps 
1. c1 is a not start configuration    OR  
2. cn is not an accepting configuration  OR 
3. some consecutive pair ci , ci+1  is not  related  ci |-  ci+1  by the transition function for M 

• See the text for one strategy for the design of the TM emulating 
the PDA. 

 



Post correspondence Problems 

• The post correspondence problem looks for a 
solution to a simple game. 

• Given a set of “dominos” like 
 
 
 

• Can one arrange the dominoes, side by side, such 
that the strings formed by concatenating top 
square and bottom square strings are the same. 

• One can use each domino 0 or more times 
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Why are no matches possible here? 
 
PCP = { <P> | P is an instance of the 
                        Post correspondence problem with a match } 
 
PCP is undecidable 

For some set of dominos, no matches may be possible 



PCP is undecidable 
• Proof by contradiction 
• Assume PCP is decidable 
• Then build a TM for ATM that uses PCP 

 
• Given TM, M, and string, w, strategy depends upon 

finding an configuration accepting history for w.  We 
show that such a history can be encoded as a PCP 
game 

• I.e. we define a set of dominos, and if that set has a 
match, then the match would give an accepting 
configuration history for w, thus deciding ATM which is 
known to be undecidable, leading to a contradiction. 
 
 



The TM machine 

• ATM (<M,w>) =  
– Create a particular PCP game , p, from M and w 

such that a match for p is an accepting 
configuration history for w under M. 

– Use PCP to solve p 
• If p is solvable, then the match is an accepting 

configuration history for w, so ATM accepts 
• If p is insolvable, then ATM rejects 

 

• How do we create p? 



Technical details 

1. We need M to never attempt to move its 
head of the left hand side of the tape. 

1. We can construct M’ with this property where M’ 
accepts the same strings as M. 

2. If w=ε we use a special symbol of the 
alphabet ⌴  to represent ε. 

3. We modify the PCP game to require that the 
match starts with the first domino in the set. 



Constructing P 

• Recall   M=(Q,Σ,Γ,δ,q0,qaccept,qreject) 
• We construct the  dominos of P in seven parts. 
• Each part place dominos that “simulate” some 

part of finding an accepting configuration 
history. 



Step 1 

1. Put 
 

As the first domino in the set.  This forces the 
game to start with the initial configuration 

 
Its clear we’ll need more dominos that extend 

the top box of the domino if we are ever to 
find a match. 

# 

#q0w1w2…wn 



Step 2 – moving the head to the right 

• For every a,b ∈Γ, and  
• every r,q ∈Q   (where q ≠ qreject) 
• If δ(q,a) = (r,b,R) 

 
 
 

• Into the set of dominos 

qa 
br 



Step 3 – moving the head to the left 

• For every a,b,c ∈Γ, and  
• every r,q ∈Q   (where q ≠ qreject) 
• If δ(q,a) = (r,b,L) 

 
 
 

• Into the set of dominos 

cqa 
rcb 



Step 4  - cells not adjacent to the head 

• For every a∈Γ  
•  put  

 
 
 
 

• Into the set of dominoes 
 

a 
a 



Step 5 – handling the markers (#) 

• Put 
 
 
 
 

• Into the set of dominos 

# 
# 

# 
⌴# 



Step 6 – catching up on accept 

• For every a∈Γ 
• Put 

 
 

• Into the set of dominos 

a qaccept 
qaccept 

qaccept  a 
qaccept 



Step 7 – cleaning up 

• Add 
 
 
 

• To the set of dominos 

qaccept  ## 
# 



How does it work 

• Each step towards acceptance supports only 
the addition of a single domino. 

• Thus every accepting path leads to a match 
• If there are no accepting paths, then the last 

cleanup steps are never possible so the top 
remains too short, and no match can be 
found. 



Turing computable functions 

• A function Σ* → Σ* is a computable function 
if some  Turing Machine M, in every input w, 
halts with just  f(w) on its tape. 
 

• Some computable functions 
– Arithmetic functions like +, *, -, /, mod, etc. 
– Turing Machine description transformations 

• F(M) = M’   where M’ accepts the same strings a M but 
never tries to move its head of the left end of the tape 



Mapping reducability 

• A language A is mapping reducable to 
language B,  written  A ≤m B, if there is a 
computable function f : Σ* → Σ* , where for 
every w ∈ Σ*,       
                w ∈ A ⇔ F(w) ∈ B 
 

• Mapping reducability creates a way to 
formally describe how to convert a question in 
A into a question in B 



Unsurprising Theorems 
Sipser page 208 

1. A  ≤m B and B is decidable then A is decidable 
 

2. A ≤m B and A is undecidable, then B is 
undecidable 



Old theorems in a new light 

• HALTTM 

• Post correspondence 
• ETM 



HALTTM 
• Find a computable function f such that 
• ATM  ≤f  HALTTM 
•   ATM (<M,w>) = accept                iff   
     HALTTM (<M’,w’>) =accept 
• Where f<M,w> = <M’,w’> 

 
• f<M,w> = 

–  create  M’ <x>  = run M on x 
• If M accepts then M’ accepts 
• If M rejects, enter a loop 

– F returns <M’,w> 



A  ≤m B and Turing Recognizability 

• A  ≤m B and B is Turing recognizable then A is 
Turing recognizable 
 

• A  ≤m B and A is not Turing recognizable then B 
is not Turing recognizable 
– Typically we let A be   ATM   the complement of ATM 



Two ways to show not Turing 
recognizable 

1. ATM  ≤m B  to show B is not Turing recognizable, 
by the second theorem on previous page 
 
 

2. Because A ≤mB   &   A ≤m B   mean the same  
1. Because of the definition of mapping reducability, 

 F(A) = problem in B 
 F(A) = problem in B 

2. Thus can also use ATM  ≤m B   to show B is not Turing 
recognizable. 



EQTM is neither Turing recognizable or 
co-Turing recognizable 

• We must show two things 
1. EQTM is not Turing recognizable 
2. The complement of EQTM,   EQTM , is not Turing 

recognizable 



Part 1:   EQTM is not Turing recognizable 

• Use the second method 
• Show      ATM  ≤m  EQTM  

 
• The reducing function F = 

– On input <M,w> construct the 2 TMs M1 and M2  
1. M1(x)   on any input, x,  reject 
2. M2(x) run M on w, if it accepts, accept 

– Output <M1,M2> 
 

• Note M1 and M2 are equivalent only if M accepts w 



Part 2:   EQTM is not Turing recognizable 

• Use the second method 
• Show    ATM  ≤m EQTM    which is the same as 
                ATM  ≤m EQTM 
 
• The reducing function G  = 

– On input <M,w> construct the 2 TMs M1 and M2  
1. M1(x)   on any input, x,  accept 
2. M2(x) run M on w, if it accepts, accept 

– Output <M1,M2> 
 

– Note that M1 and M2 agree only if M accepts w 
 



done 

 



Example { anbm  | n,m ≥ 0} 
on the string  “aab” 

# 
#0aab 

0a 
a0 

0a 
a0 

0b 
b1 

0⌴ 
⌴1 
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