
Time Complexity 

Sipser pages 247 - 283 



Measuring complexity 

• How complex is a computation? 
– What can we measure 

• Time 
• Space 
• Other things? 

• Time complexity 
– One thing we might count is the number of transitions 

a TM makes. 
– The number of instructions on a x86 cpu 
– The number of seconds (why is this not a good measure?) 



An example:  A = {0k1k | k ≥0 } 

• Low level TM description 
 

• M1(w) =                     where w is a string 
– Scan across tape and reject if a 0 is found to the right 

of a 1 
– Repeat if both 0’s and 1’s remain on tape 

• Scan across tape crossing off a single 0 and a single 1 
– If 0’s remain after all 1’s have been crossed off, or if 1’s 

remain after all 0’s have been crossed of , reject. 
Otherwise if neither 0’s or 1’s remain, accept. 
 



Time as a function of input size n 
• Scan across tape and reject if a 0 is found to the right of a 1 (n-

steps, and n-steps more to reposition head at left) 
• Repeat if both 0’s and 1’s remain on tape (at most n/2  repetitions) 

– Scan across tape crossing off a single 0 and a single 1 (about n-steps) 
• If 0’s remain after all 1’s have been crossed off, or if 1’s remain 

after all 0’s have been crossed of , reject. Otherwise if neither 0’s 
or 1’s remain, accept. (about n-steps) 

• We consider the worst case performance 
• The best we can do, even from a low level 

description, is estimate 
• About      n + n + (n/2 * n) + n 



Estimating 
• Can we be more formal about estimating? 
• Consider f(n) = 7n3 + 6n2 + 100n + 67896 
• What function is a good estimate of f? 
• Lets compute the ratio     (f n)  /  67896 
 
n   (f n) / 67896 
0    1.0 
1    1.0016643 
2    1.0041239 
3    1.0079975 
4    1.0139036 
5    1.0224608 
6    1.0342877 
7    1.0500029 
8    1.070225 
9    1.0955726 

Looks like a 
pretty good 

estimate 

n       (f n) / 67896 
10     1.126664310121362 
20     1.8895958524802638 
50     14.181925297513844 
100   105.12984564628255 
150   351.16790385295155 
200   829.6202427241664 
250   1617.8110050665723 
300   2793.064333686815 

Well, maybe not 



Asymptotic analysis 

– Try and find a formula that the actual cost 
converges with as the size of the problem goes to 
infinity. 

 
As the problem size gets bigger, then we want the 

actual cost and the estimated cost to get very 
close. 



Ratio   (f n)  /  (n^3) 
1      68009.0 
3      2534.777777777778 
10    76.496 
20    16.037 
50    7.703168 
100  7.137896 
150  7.064561777777778 
200  7.040987 
250  7.029945344 
300  7.023625777777778 

When n is small, its not very 
accurate, but   as  n gets larger 
than 50 or so,  the ratio 
converges to 7 
 
The higher order terms are 
much more accurate as n gets 
large. 
 
The highest order term is in 
general the best estimate as n 
gets large. 
 
 



Big O notation 

• Let f and g be functions from Nat to Real 
• We say that   f(n) = O(g(n)) 
• If positive numbers C and n0 exist such that for 

every integer n ≥ n0        f(n) ≤   C × g(n) 
 
 

• We say that g(n) is a asymptotic upper 
bound for f(n) 

We see that f(n) is “within a 
constant C” of g(n).  
Constants don’t matter 



Polynomials and Big O 

• If f(n)  is a polynomial 
–   Σ cnxj 

 

Then the highest order term is a good candidate 
for Big O 

 
f(n) = 7n3 + 6n2 + 100n + 67896 
f(n) = O (n3)  
 
 



Logarithms and Big O 
• Suppose      x =  log2 n 

– This means that   2x = n 
 

• If we change the base from 2 to 10 
•  log2 n  = 0.301029995 × log10 n  

 
• Since constants don’t matter we surpress the base 

when we have logarithms in Big O notation 
 
h(n) = 3n(log2 n) + 5 n + 6 
h(n) = O(n ×  log n) 

 
 
 



Manipulating Big O 

• Sums of Big O, collapse to the largest term 
– O(n2) + O(n)  =  O(n2) 

 

 



small o notation 

• Big O  says  that one term is no more than 
 

• Small  o  says that one term is strictly less 
• Let f and g be functions from Nat to Real 
• We say that   f(n) = o(g(n)) 

 

0
)(
)(lim

=
∞→ ng

nf
n



Analyzing Algorithms 
• Scan across tape and reject if a 0 is found to the right of a 1 (O(n) 

steps, and O(n)-steps more to reposition head at left) 
• Repeat if both 0’s and 1’s remain on tape (at most  O(n/2) repetitions) 

– Scan across tape crossing off a single 0 and a single 1 (O(n)-steps) 
• If 0’s remain after all 1’s have been crossed off, or if 1’s remain after all 

0’s have been crossed of , reject. Otherwise if neither 0’s or 1’s remain, 
accept. (about  O(n)-steps) 
 

• O(n) + O(n)  + O(n/2)×O(n) + O(n)   =   
• O(n) + O(n)  + O(n)×O(n) + O(n)       = 
• O(n) + O(n)  + O(n2) + O(n)                = 
• O(n2) 

 
 



Definition:  Time complexity 

• Let t: Nat -> Real be a function 
 

• Define the time complexity class TIME(t(n)) 
 

• To be the collection of all languages that are 
decidable by an O(n(t)) time Turning Machine 



Algorithm can affect Time 
• Consider another TM  for    {0k1k | k ≥0 } 
• M2(w) =                     where w is a string 

– Scan across tape and reject if a 0 is found to the right of a 
1.. O(n) 

– Repeat as long as some 0’s and some 1’s remain on the 
tape.   O(log n) repetitions 

• Scan across tape checking if the total number of 0’s and 1’s is even 
or odd, reject if it is odd.  O(n) 

• Scan across the tape again, crossing off every other 0, starting 
either the first 0, and every other 1, starting with the first 1  O(n) 

– If  no 0’s no 1’s remain, accept, otherwise reject.    O(n) 
• O(n) + O(log n)(O(n) + O(n)) + O(n) 
• O(n log n) 

 



Model can affect Time 
• Consider 2-tape  TM  for    {0k1k | k ≥0 } 
• M3(w) =                     where w is a string 

– Scan across tape and reject if a 0 is found to the right of a 1.  
O(n) 

– Scan across the 0’s on tape-1, until the first 1. At the same time 
copy the 0’s onto tape-2.  O(n) 

– Scan across the 1’s on tape-1 until the end of input. For each 1 
read on tape-1, cross off a 0 on tape-2. If all 0’s are crossed off 
before all the 1’s are read, reject.  O(n) 

– If all the 0’s have been crossed off, accept, If any 0’s remain, 
reject.  O(n) 
 

• O(n) + O(n) + O(n) + O(n) =   O(n) 
 
 



Theorem 

• Let t(n) be a function where t(n) ≥ n. Then 
every t(n) time multi-tape TM has an 
equivalent O(t2(n)) time single-tape machine. 
 

• The proof of this is in analogy with how a 
single-tape machine emulates a multi-tape 
machine. See text book for details 



Deterministic  v.s. Non-Deterministic 

• Let N be a nondeterminsitic TM that is a decider. The 
running time of N is a function f: Nat → Nat, where 
f(n) is the maximum number of steps that N uses on 
any branch of its computation on any input of length 
n. 

q0w 

ID-1 ID-2 

ID-3 

ID-6 ID-7 

ID-4 ID-5 

ID-9 ID-8 



Theorem 

• Let t(n) be a function where t(n) ≥ n. Then 
every t(n) time non-deterministic TM has an 
equivalent 2O(t(n)) time deterministic machine. 

• We simulate a nondeterministic TM by 
searching its computation tree (in breadth first 
order) 

q0w 

ID-1 ID-2 

ID-3 

ID-6 ID-7 

ID-4 ID-5 

ID-9 ID-8 



Proof 

• Every path has length  at most t(n), because 
we said it was a t(n) decider. 

• Every node (ID-m) has at most b children for 
some constant b (the transition table 
determines this) 

• The total number of leaves is 
bounded by bt(n) 

q0w 

ID-1 ID-2 

ID-3 

ID-6 ID-7 

ID-4 ID-5 

ID-9 ID-8 



Proof continued 

• The simulation might have to visit every leaf 
• The number of leaves are bounded by bt(n) 

• The time to get to a leaf is bounded by t(n) 
• So the time is  O(t(n)bt(n) )  = 2O(t(n)) 



Thoughts on Complexity 

• Algorithm can affect time complexity 
• Computational model can affect complexity 
• Non determinism can affect complexity 
• Encoding of data (base 1 vs base 2) can affect 

complexity 
 

• For expressivity, all reasonable models are 
equivalent. 

• For complexity many things can change the 
complexity class. 
 



More thoughts 

• Lots of difference between time complexities 
caused by algorithm, data-encoding, machine 
model, etc. 
– The biggest increase is squaring (or polynomial) 

• On the other hand the increase in time 
between deterministic and non-deterministic 
was exponential. 

• So we look at things that distinguish between 
polynomial and exponential changes 



Why make the choice between 
polynomial and exponential 

Exponential growth is so fast, exponential algorithms 
are not practical 

 
n     n2            2n 

 
1      1             2 
2      4             4 
3      9             8 
10   100         1024 
15    225         32768 
20    400         1048576 
50    2500       1125899906842624 
100  10000    1267650600228229401496703205376 
200 40000    1606938044258990275541962092341162602522202993782792835301376 
300 90000    2.03 × 1090 

                        1082  ≅  number of atoms in the universe 



More reasons 

• Changes in time complexity caused by 
algorithm, data-encoding, machine model, can 
all be described by polynomials 

• So there is a qualitative difference between 
polynomial and exponential 
– Polynomial differences are small 
– Exponential differences are large (exponential 

algorithms are rarely useful) 



Analogy 

• For expressivity, all reasonable models are 
equivalent. 
 

• For complexity, all reasonable deterministic 
models  are polynomial  equivalent 
 

• Non-deterministic models are can be 
exponentially more complex 
 



What’s important 

• Are n3 algorithms better than n2 

– They are both polynomial 
– Why don’t we make a distinction 
– Should we care (Yes, but ….) 

 
• It is a matter of perspective 

– When it comes to whether a problem is too-hard the 
distinction between polynomial and exponential 
seems a good one 

– This is backed up by experience 



The Class P 

• P is the class of languages that are decidable 
in polynomial time on a deterministic single-
tape Turing Machine. 
 
 

1. P is invariant for all models that are 
polynomial equivalent to deterministic TM 

2. P roughly corresponds to effectively solvable 
problems on a computer 

 
 

)( knTIME
k

P =



• Once a polynomial time algorithm is found for 
a problem, usually a key insight has been 
gained into the class that problem represents 
 

• Brute force (search based) are often 
exponential and don’t offer such insights 



Examples of problems in P 

• Graph algorithms 
– The Path Problem 

• Relative Primeness 
– Euclid’s algorithm 

• ACFG 

High level descriptions without 
reference to features about a 
particular model. 
 
Describe algorithm using 
numbered stages 
 
1. Find  polynomial Big O 

bound on number of stages 
 

2. Show each stage can be 
implemented in polynomial 
time 

 



The PATH problem 

• M <G,s,t>  =    where G is a graph with nodes s and t 

1. Place a mark on node S 
2. Repeat ntil no additional nodes can be marked 

1. Scan all the edges of G, if an edge (a,b) is found 
where a is marked and b is not marked, mark b 

3. If t is marked, accept, else reject 
 
 

How might we argue this is polynomial? 



Relative Primeness 

• E <x,y> =  where x,y, are Natural numbers 
A. Repeat until y=0 

1. Assign x <-  mod x y 
2. Exchange x and y 

B. Output x 
 

• R <x,y> = where x,y, are Natural numbers 
– Run E on <x,y> 
– If the result is 1, accept else reject 

This is called 
Euclid’s algorithm 



ACFG ∈ P 
• Let G be CFG in Chomsky Normal Form 
• D <w> =    where w = w1 … wn 

1. If w=ε, and S →ε is a rule, accept 
2. For i = 1 to n 

1. For each variable A 
1. Test whether A →b is a rule, where b= wi 
2. If so place A in table(i,i) 

3. For l = 2 to n                  -- l is length of substring 
1. For i = 1 to n-l+1                 -- i is the start 

1. For j = i+l-1                    -- j is the end 
1. For  k = I to j-1      -- k is the split position 

1. If table(i,k) contains B and table(k+1,j) contains C, put A in 
table(i,j) 

4. If S in in table(1,n), accept, otherwise, reject 



Verifiers 

• Some problems hare hard to solve, but easy to 
check. 
 

Suppose a path consists  
A sequence of N S E W  
Moves. 
Can you find a solution to 
The maze?  Can you check 
 a solution? 



Definition 

• A verifier for a language A is an algorithm V, where  
• A = { w | V accepts <w,c> for some string c } 

 
 

• We measure the time of a verifier in terms of the 
length of w. 

• A polynomial verifier runs in polynomial time in the 
length of w 

• A language is polynomial verifiable if it has a 
polynomial verifier 
 

w is a solution, and c is 
called the certificate, that V 
may use to check w 



Example verifiers 

• Composite  =  { x | x =p×q, for integer p,q > 1} 
– A verifier takes in x, and a divisor for x, c, (the certificate).     If   x  

`mod`  c  == 0   then accept 

 
• HAMPATH =  

          { <G,s,t> | G is a directed graph with a hamiltonian path from s to t } 
• Is G a valid graph. 
• Is there a path from s to t in G 
• Does the path visit every node? 

 
– Given a potential path [n1,…,nm] can we verify <G,s,t>  this in 

polynomial time? 
– Can we find a path for <G,s,t> in polynomial time? 



Verifying HAMPATH 

• N1 <G,s,t,c= [n1,…,nm]> =    where G is a graph, and s, t are 
nodes in G, and the certificate is a sequence of m nodes 
– Verify that for each ni in  [n1,…,nm]   that ni is a node in G, and m is the 

number of nodes in G 
– Check for repetitions, if any reject 
– Check if n1 = s  and nm = t  ,   if either check fails then reject 
– For each  i between 1 and (m-1)  check whether (mi, mi+1) is an edge of G. 

If any are not then reject. Otherwise all tests have passed so accept. 

 



The Class NP 

• Definition 
– The class NP is the class of languages that have 

polynomial time verifiers. 

 
• Theorem 

– A language is in NP iff it is decided by some 
nondeterministic polynomial time Turing Machine 



Is HAMPATH in NP 
• Given a potential path [n1,…,nm] can we verify it is in  

HAMPATH <G,s,t>  in polynomial time on a deterministic 
TM ?, Or can we find such a path in polynomial time on a 
non-deterministic TM? 
 
• N1 <G,s,t> =    where G is a graph, and s, t are nodes in G 

– Nondeterministically, write a list of m numbers [n1,…,nm]   where ni is a node 
in G, and m is the number of nodes in G 

– Check for repetitions, if any reject 
– Check if n1 = s  and nm = t  ,   if either check fails then reject 
– For each  i between 1 and (m-1)  check whether (mi, mi+1) is an edge of G. If 

any are not then reject. Otherwise all tests have passed so accept. 
 

Is this nondeterministic machine in P 
 



Two ways 

• Polynomial determinist verifiers and 
polynomial non deterministic solvers are 
equivalent 
 

• Two things to prove 
1. A ∈ NP  =>  A has nondeterministic polynomial 

solver 
2. A has a A nondeterministic polynomial solver => 

A ∈ NP 



A ∈ NP  =>  A has nondeterministic polynomial solver 

• Given verifier V that runs in time nk 
• Construct Nonderministic TM N 
• N <w>  =       where n is a string of length n 

Nondeterministically  select a string c of length at most nk 

Run V on input <w,c> 
If V accepts, then accept, otherwise reject 



A has a A nondeterministic polynomial solver  
=> A ∈ NP 

• Given a Nondeterministic TM, N , that solves A 
• Construct a polynomial time verifier, V 

 
• V <w,c>       where w and c  are strings 

– Simulate N on input w, treating each symbol of c 
as a description of the nondeterministic choice to 
make at each step 

– If the branch, guided by c, of N’s computation 
accepts, then accept, otherwise reject 



Problems in NP 

• Graph problems 
– The N-Clique problem 

• Subset Sum 



The N-clique problem 

• A clique is a set of 
nodes chosen from 
a graph, where 
every node in the 
cliques is connected 
by an edge. 
 

• An N-clique is a 
clique with n nodes 



A verifier 

• Let a set of nodes (a potential clique) be the 
certificate. 
 

• V <G,K,c> = 
1. Test whether c is a set of nodes in G 
2. Test whether G contains all edges connecting nodes 

in c 
3. If both pass, then accept, else reject 

 
• Can we build a nondeterministic Solver? 



The subset sum problem 
• Let  S={x1, x2, … , xn} be a set of integers 
• Let t be a target number 
• Is their a subset of S whose sum adds up to t (duplicates are 

allowed) 
 

• Formally SUBSETSUM = 
– {<S,t> | S = {x1, x2, … , xn} 
–             , exists y = = {y1, … , xm},  
–             , Σi yi = t } 

 
• For example  SUBSETSUM<{4,11,16,21,27},25> accepts 

because  4+21 = 25 



Two solutions 

• Polynomial deterministic Verifier 
– V <S,t,c> = … 

 
 
 

• Polynomial non-deterministic Decider 
– N <S,t> = … 

 



  is  P  =  NP ? 
• Both P and NP are sets of languages 
• Could it be that  P = NP 
• Possible choices 

 
 
 
 
 

• The best deterministic method for simulating 
nondeterministic languages languages take exponential 
time 

•      NP    ⊆     EXPTIME   =   Uk  TIME(2n^k) 
• Could it be that there is a smaller deterministic class? 

NP 
 
 P P  = NP 



Thoughts on P=NP 

• Recall 
– P is those problems that can be decided quickly 
– NP is those problems that can be verified quickly 

 
• Most mathematicians think P ≠ NP because so 

many people have tried to prove P=NP and come 
up empty. But that is hardly a proof. 
 

• What about a direct proof of P ≠ NP , no one 
knows how to do this. It requires showing there 
does not exist an algorithm such that … 
 



NP completeness 

• Stephen Cook and Leonid Levin discovered 
that some NP problems are expressive enough 
to encode all other NP problems. 

• Such problems are called NP-complete 
– Examples include boolean satisfiability and 

Hamiltonian Path 
• Thus if any NP-complete problem has a 

polynomial solution, than all NP problems 
have a polynomial solution. 



Polynomial time function 

• A function  f: Σ* → Σ*  is a polynomial time 
computable function if some polynomial time 
TM, M, exists that halts with just F(w) on its 
tape, when started on any input w. 
 
 

• Does this look familiar? 



Polynomial time reducability 

• A language, A,  is polynomial time mapping 
reducible (or simply polynomial time reducible) 
to a language, B, written A ≤p B ,if a polynomial 
time computable function f: : Σ* → Σ*  exists, 
where for every w,  
 

w ∈ A   ⇔  f(w) ∈ B 
 

• The function f is called the polynomial time 
reduction of A to B 



Polynomial Reducability Theorems 

• A  ≤p B  and   B∈P     then    A∈P   
 
Does this look familiar? 
 
Proof 
Let M be the polynomial time algorithm deciding B 
Let f be the polynomial time reduction from A to B 
N <w> =  

1. Compute f(w) 
2. Run M on input f(w) and output whatever M outputs 



Definition 

• A language B is NP-complete if it satisfies 2 
conditions 

1. B is n NP, and 
2. Every A in NP is polynomial time reducable to B 

                 Forall   A ∈ NP . A  ≤p B  
 

 



Showing P or NP-complete 

• If B is NP-complete and  B  ≤p C,  for C ∈ NP, 
then C in NP-complete 
– The most common “B” is the language boolean 

satifiability 

 
• Compare with 
• A  ≤p B  and   B∈P     then    A∈P   

 
 
 



Cook-Levin Theorem 

• If we had 1 NP-complete language we could use it 
to show other languages are NP complete. 
 

• The first language to be shown was NP-complete 
was boolean satisfiability (SAT) 
– The proof of this is in the text. It has 2 steps 

1. Show SAT is NP 
2. Show that every other NP language is polynomial 

reducible to SAT 
– Most other NP-complete results are gotten by the 

theorem on the previous page. 


	Time Complexity
	Measuring complexity
	An example:  A = {0k1k | k ≥0 }
	Time as a function of input size n
	Estimating
	Asymptotic analysis
	Ratio   (f n)  /  (n^3)
	Big O notation
	Polynomials and Big O
	Logarithms and Big O
	Manipulating Big O
	small o notation
	Analyzing Algorithms
	Definition:  Time complexity
	Algorithm can affect Time
	Model can affect Time
	Theorem
	Deterministic  v.s. Non-Deterministic
	Theorem
	Proof
	Proof continued
	Thoughts on Complexity
	More thoughts
	Why make the choice between polynomial and exponential
	More reasons
	Analogy
	What’s important
	The Class P
	Slide Number 29
	Examples of problems in P
	The PATH problem
	Relative Primeness
	ACFG  P
	Verifiers
	Definition
	Example verifiers
	Verifying HAMPATH
	The Class NP
	Is HAMPATH in NP
	Two ways
	A  NP  =>  A has nondeterministic polynomial solver
	A has a A nondeterministic polynomial solver �=> A  NP
	Problems in NP
	The N-clique problem
	A verifier
	The subset sum problem
	Two solutions
	  is  P  =  NP ?
	Thoughts on P=NP
	NP completeness
	Polynomial time function
	Polynomial time reducability
	Polynomial Reducability Theorems
	Definition
	Showing P or NP-complete
	Cook-Levin Theorem

