Steps toward a Science of Design

Carliss Y. Baldwin

NSF PI Conference on the Science of Design March 1, 2007 Alexandria, VA

© Carliss Y. Baldwin 2007

A journey of a thousand miles begins with a single step...

Confucius, c. 500 BC

The Vannevar Bush theory

Motivation: Let scientists do what they want

Method of transfer: Trickle down

Donald Stokes' critique

- Trickle down doesn't work—who will integrate dispersed basic results?
- What about feedbacks? Real world problems can motivate excellent basic science

Stokes' Matrix

Useful?

Stokes' Matrix

Useful?

Stokes' Matrix

Stokes' Matrix

Useful?

Stokes' Matrix

Comroe-Dripps study

- Identified 10 most important clinical advances in cardiovascular and pulmonary diseases
- 500 "key articles" (going back 200 years)
- Classified the articles
 - Basic unrelated to clinical problem (Bohr)
 - Basic related to a clinical problem (Pasteur)
 - Not concerned with basic mechanisms (Edison)

Comroe-Dripps study—results

How a science develops

Where we are now—

Turris Babel

The Tower of Babel

So in the rest of this talk...

Let us find our common ground!

Tribute to the Domain Specialists

- Bell and Newell: *Computer Structures*
- Hennessy and Patterson: Computer Architecture
- Mead and Conway: Intro to VLSI
- Nevins and Whitney: *Concurrent Engineering*
- Nam Suh and German design theorists in mechanical engineering

Who occupies Bohr's quadrant in the science of design?

- Herbert Simon
- Christopher Alexander
- Fred Brooks
- David Parnas
- John Holland
- Baldwin and Clark (inadvertant and accidental)

Herbert Simon

- Sciences of the Artificial
- NOT his most important work
- Most fundamental insight: Design is a decisionmaking process (under constraints of physics, logic and cognition)

Rational and reductionist

Christopher Alexander

- Notes on the Synthesis of Form; A Pattern Language; A City is not a Tree; The Nature of Order
- Most fundamental insights: user-centered adaptive design; non-hierarchical complexity; unfolding designs; patterns
- Mystic and visionary (frustrating to scientists)

Frederick Brooks

- The Mythical Man Month; No Silver Bullet; Computer Architecture
- Most fundamental insights: the complexity catastrophe lurking in large designs; limits on the division of knowledge and labor; group intercommunication formula
- Waiting for the field to catch up to him; May belong in Pasteur's quadrant

David Parnas

- On the Criteria to be Used in Decomposing Systems into Modules; Software Fundamentals
- Most important ideas: Information-hiding modularity; Abstraction; Interface; Modules are task assignments
- Almost an Edisonian, but keeps breaking out

John Holland

- Hidden Order; Adaptation in Natural and Artificial Systems; Emergence
- Most important ideas: Formal dynamics of complex adaptive systems; unified theory of natural and artificial evolution; operators; tags
- Our best link to complexity sciences (better than Kauffman)

Baldwin and Clark

- Design Rules: The Power of Modularity
- Most important ideas: designs are lodged in the larger economy; financial value is a force driving design evolution; designs are options; uncertainty is valuable
- We read everyone else!

We must hang together, gentlemen...

Else we shall most assuredly hang separately.

Information Hierarchy Decisions View of Designs

Definition of Designs:

Designs are the *instructions*, based on knowledge, that *turn resources into things* people *use and value*.

Implications of the definition

 Designs are not "the thing itself", they are the instructions for making it

– In software: source code = design

- Compiled, running code = the thing itself
- Designs are information
- Designs are part of human knowledge
 - But not all knowledge is design
 - Designs are what make knowledge useful

The Process of Designing

- Is the process of filling in the set of instructions
- Designing occurs in time

- When design is complete, the design process is over, "production" can begin
- Along the way, you have partial designs
 - A source of huge amounts of confusion!

Think of the Many Different Names for Partial Designs

The Many Different Names for Partial Designs

Decision-Information Hierarchies

- Process of design is a decision-making process (remember Simon!)
- Some design decisions create the need for subsequent decisions

Decision-Information Hierarchies

- If no cap—Decisions contingent on "cap" disappear
- List of instructions becomes shorter

Problem solving design hierarchy

Fig. 1. Marple's ducts and valves problem. Sloping lines are alternatives; vertical lines are subproblems. Source: Marple's [17,p.60]. "The Decisions of Engineering Design" IEEE Transactions on Engineering Management (June, 1961), p. 60.

Design Search Spaces

- A design space comprises the set of all possible variants of a set of designs
- Design spaces are bounded by prior design decisions
 - Mug ... w/ cap
 - Pentium chip ... w/ out-of-order, superscalar microarchitecture
- Can be mapped, unmapped, partially mapped

The newer the artifact, the less we know, the more exploration

All these—and many more— are in the design space of "bicycles"

Mapping Value to Design Spaces

"Fitness landscape" for eyes

Created by Mike Land. Height represents optical quality and the ground plane evolutionary distance. From Dawkins R: Climbing Mount Improbable. New York, Norton, 1996.

Can we do this for designs?

"Fitness landscape" for eyes

Created by Mike Land. Height represents optical quality and the ground plane evolutionary distance. From Dawkins R: Climbing Mount Improbable. New York, Norton, 1996.

Can we do this for designs?

"Fitness landscape" for a computer program

Scored results of submissions to the Mathworks "Sudoku" programming contest. Red path shows trajectory of best design over time.

http://www.math works.com/contes t/sudoku/evolutio n.html

Properties of Designs

Costly

Cannot be consumed directly

- Non-rival
- Uncertain outcomes ex ante
- "Options" ex post
- Sometimes rankable
- Composable in our imaginations

A chimera

Is a mythical beast with

- The head and body of a lion
- The head of a goat
- A tail that is the head and body of a snake

Imagine a chimera

Would you recognize one if you saw it?

The chimera of Arrezzo

Headlines for a Science of Design

- Tools and methods that span different design domains
- Studies of design value and values
- Studies of large, complex, multi-domain systems

Heading for Pasteur's Quadrant

Step by step on the 1000 mile journey ...

Thank you!