
First order logic 



What is new compared to 
propositional logic? 

• We have a collection of things. 
• We call this the domain of discourse. 
• We have “predicates” that state properties 

about the items in the collection. 
• We can quantify statements in the logic 

– Universal quatification – for all x … 
– Existential qunatification- there exists x …. 



Examples 

• All natural numbers are either even or odd 
– What is the domain of discourse? 

• In the Family tree example (from the FiniteSet 
code), no one is a descendant of themselves. 
– What is the predicate? 

• Addition is commutative 
– What is the domain? 
– What is the preicate? 



Observation 

• Many logics have these distinctions 
– A domain of discourse 
– A set of predicates over the domain 

• Some logics add functions over the domain as well as 
predicates 

– A set of connectives (and, or, not, etc) 
– A set of quantifiers (forall, exists) 

• Some logics  (e.g. temporal) add more quantifiers 

• How does propositional logic fit in this 
framework? 



First order logic 

• A domain of discourse 
• Terms over the domain 

– A minimum of variables 
– Sometimes constants 
– Some times functions 

• Formulas 
– Predicates P(term, …, term) 
– Connectives (and, or, not, implies) 
– Quantifers (for all, exists) 



Formulas and Terms 
• A First-order logic is a parameterized family of logics 

– Parameters 
• Constants  ( c ) 
• Function symbols ( f ) 
• Predicate symbols ( p ) 

• L(c,f,p)  is a logic for concrete c, f, and p 
• Quantifiers are bound in formula, but name individuals 

used in terms 
• Predicates are atomic elements of formulas but are applied 

to terms 
• Both functions and predicates are applied to a fixed 

number of arguments, called their arity. 
• Constants are functions of arity 0 (implies C ⊆ F ) 

 



Definition of Terms for L(C,F,P) 

• Let C be a subset of F 
• Any variable is a term 
• If c is a nullary function then c is a term 
• If t1, … , tn are terms and f is an n-ary function 

symbol, then f (t1, … ,tn) is a term 
• Nothing else is a term 



Atomic formula of L(C,F,P) 

• If p is an n-ary predicate symbol, and t1, … , tn 
are terms, then p(t1, … ,tn) is an atomic 
formula 

• True and False are atomic formula 



Inductive Formula over L(C,F,P) 

• If w is an atomic formula, then w is a Formula 
• If w is a formula, then ~w is a formula 
• If w and v are formula then so are 

–  w ∧ v 
–  w ∨ v 
–  w → v 

• If x is a variable and w is a formula then so are 
– Forall x .  w 
– Exists x  . w 



Free and bound variables 

• Quantifiers add complexity because they bind 
variables in a certain scope. 

• Some variables are free because they are not 
in scope of any quantifier 

• A closed formula (sometimes called a 
sentence) has no free variables 

• A formula with at least one free variable is 
called open 
 



Truth of Formula 

• We will eventually get around to defining the 
truth or falsehood of a formula. 

• These concepts usually apply to only “closed 
formula”  

• For an open formula we must be more precise 
by what we mean by the free variables. 



We will illustrate with a Haskell 
Program 

• Consists of many files 
– Term.hs 
– Formula.hs 
– Subst.hs 
– Print.hs 
– etc 



Terms 
data Term f v = Var v  
              | Fun Bool f [Term f v] deriving Eq 
 
 
variables :: Term f v -> [Term f v] 
variables (Var v)  = [Var v] 
variables (Fun s n ts) = concat (map variables ts) 
 
newVar :: Int -> Term f String 
newVar n = Var ("?" ++ intToString n) 
 
newFun :: Int -> [Term String v] -> Term String v 
newFun n ts = Fun True ("_" ++ intToString n) ts 



Substitution 

• Substitution replaces a variable with a term 
• Its is a natural operation, but is subtle because 

the quantifiers bind variables. 
• Variables in the scope of a quantifier should 

not be substituted 
• Substitution is a monadic function 

– type Subst v m = v -> m v 
• Read    t >>= s    as the image of  t 

under substituion s 
 
 



Subst 
type Subst v m = v -> m v 
 
emptySubst :: Monad m => Subst v m 
emptySubst v = return v 
 
-- Substituting the variable v with the term t 
 
(|->) :: (Eq v, Monad m) => v -> m v -> Subst v m 
(v |-> t) v' | v == v'   = t 
             | otherwise = emptySubst v' 
 
-- Composing two substitutions 
(|=>) :: Monad m => Subst v m -> Subst v m -> Subst v m 
s1 |=> s2 = (s1 =<<) . s2 
 
-- Removing a variable from a substitution 
(|/->) :: (Eq v, Monad m) => v -> Subst v m -> Subst v m 
(v |/-> s) v' | v == v'   = return v' 
              | otherwise = s v' 



Formula 
data Formula r f v = Rel r [Term f v] 
                   | Conn Cs [Formula r f v] 
                   | Quant Qs v (Formula r f v)  
                   deriving Eq 
data Qs = All | Exist deriving Eq 
 
data Cs = And | Or | Imp  
        | T | F | Not  
        deriving Eq 
subst :: Eq v => (v -> Term f v) -> Formula r f v -> 

Formula r f v 
subst s (Rel r ts)    = Rel r (map (s =<<) ts) 
subst s (Conn c fs)   = Conn c (map (subst s) fs) 
subst s (Quant q v f) = Quant q v (subst (v |/-> s) f) 
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