First order logic

What is new compared to propositional logic?

- We have a collection of things.
- We call this the domain of discourse.
- We have "predicates" that state properties about the items in the collection.
- We can quantify statements in the logic
- Universal quatification - for all x ...
- Existential qunatification- there exists x....

Examples

- All natural numbers are either even or odd - What is the domain of discourse?
- In the Family tree example (from the FiniteSet code), no one is a descendant of themselves.
- What is the predicate?
- Addition is commutative
- What is the domain?
- What is the preicate?

Observation

- Many logics have these distinctions
- A domain of discourse
- A set of predicates over the domain
- Some logics add functions over the domain as well as predicates
- A set of connectives (and, or, not, etc)
- A set of quantifiers (forall, exists)
- Some logics (e.g. temporal) add more quantifiers
- How does propositional logic fit in this framework?

First order logic

- A domain of discourse
- Terms over the domain
- A minimum of variables
- Sometimes constants
- Some times functions
- Formulas
- Predicates P(term, ..., term)
- Connectives (and, or, not, implies)
- Quantifers (for all, exists)

Formulas and Terms

- A First-order logic is a parameterized family of logics
- Parameters
- Constants (c)
- Function symbols (f)
- Predicate symbols (p)
- $L(c, f, p)$ is a logic for concrete c, f, and p
- Quantifiers are bound in formula, but name individuals used in terms
- Predicates are atomic elements of formulas but are applied to terms
- Both functions and predicates are applied to a fixed number of arguments, called their arity.
- Constants are functions of arity 0 (implies $C \subseteq F$)

Definition of Terms for $L(C, F, P)$

- Let C be a subset of F
- Any variable is a term
- If c is a nullary function then c is a term
- If t_{1}, \ldots, t_{n} are terms and f is an n-ary function symbol, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term
- Nothing else is a term

Atomic formula of $L(C, F, P)$

- If p is an n -ary predicate symbol, and $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$ are terms, then $\mathrm{p}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ is an atomic formula
- True and False are atomic formula

Inductive Formula over L(C,F,P)

- If w is an atomic formula, then w is a Formula
- If w is a formula, then ${ }^{\sim} w$ is a formula
- If w and v are formula then so are
$-w \wedge v$
- $w \vee v$
$-\mathrm{w} \rightarrow \mathrm{V}$
- If x is a variable and w is a formula then so are
- Forall x . w
- Exists x . w

Free and bound variables

- Quantifiers add complexity because they bind variables in a certain scope.
- Some variables are free because they are not in scope of any quantifier
- A closed formula (sometimes called a sentence) has no free variables
- A formula with at least one free variable is called open

Truth of Formula

- We will eventually get around to defining the truth or falsehood of a formula.
- These concepts usually apply to only "closed formula"
- For an open formula we must be more precise by what we mean by the free variables.

We will illustrate with a Haskell Program

- Consists of many files
- Term.hs
- Formula.hs
- Subst.hs
- Print.hs
- etc

Terms

```
data Term f v = Var v
    | Fun Bool f [Term f v] deriving Eq
```

```
variables :: Term f v -> [Term f v]
```

variables :: Term f v -> [Term f v]
variables (Var v) = [Var v]
variables (Var v) = [Var v]
variables (Fun s n ts) = concat (map variables ts)
variables (Fun s n ts) = concat (map variables ts)
newVar : : Int -> Term f String
newVar : : Int -> Term f String
newVar n = Var ("?" ++ intToString n)
newVar n = Var ("?" ++ intToString n)
newFun :: Int -> [Term String v] -> Term String v
newFun n ts = Fun True ("_" ++ intToString n) ts

```

\section*{Substitution}
- Substitution replaces a variable with a term
- Its is a natural operation, but is subtle because the quantifiers bind variables.
- Variables in the scope of a quantifier should not be substituted
- Substitution is a monadic function
-type Subst v m = v -> m v
- Read \(\mathbf{t} \gg \mathbf{s}\) as the image of \(t\) under substituion s

\section*{Subst}
type Subst v m = v -> m v
emptySubst : : Monad m => Subst \(v \mathrm{~m}\) emptySubst \(v=\) return \(v\)
-- Substituting the variable \(v\) with the term \(t\)
(|->) :: (Eq v, Monad m) => v -> m v -> Subst v m
(v |-> t) v' | v == v' = t
| otherwise = emptySubst \(\mathrm{v}^{\prime}\)
-- Composing two substitutions
(|=>) : : Monad m => Subst v m -> Subst v m -> Subst v m s1 |=> s2 = ( \(\mathrm{s} 1 \mathrm{~L}=<\) ) . s2
-- Removing a variable from a substitution
(|/->) :: (Eq v, Monad m) => v -> Subst v m -> Subst \(v\) m
(v |/-> s) v' | v == \(v^{\prime}=\) return \(v^{\prime}\)
| otherwise = s v'

\section*{Formula}
```

data Formula r f v = Rel r [Term f v]
| Conn Cs [Formula r f v]
| Quant Qs v (Formula r f v)
deriving Eq
data Qs = All | Exist deriving Eq
data Cs = And | Or | Imp
| T | F | Not
deriving Eq
subst :: Eq v => (v -> Term f v) -> Formula r f v ->
Formula r f v
subst s (Rel r ts) = Rel r (map (s =<<) ts)
subst s (Conn c fs) = Conn c (map (subst s) fs)
subst s (Quant q v f) = Quant q v (subst (v |/-> s) f)

```
```

