
First order logic

What is new compared to
propositional logic?

• We have a collection of things.
• We call this the domain of discourse.
• We have “predicates” that state properties

about the items in the collection.
• We can quantify statements in the logic

– Universal quatification – for all x …
– Existential qunatification- there exists x ….

Examples

• All natural numbers are either even or odd
– What is the domain of discourse?

• In the Family tree example (from the FiniteSet
code), no one is a descendant of themselves.
– What is the predicate?

• Addition is commutative
– What is the domain?
– What is the preicate?

Observation

• Many logics have these distinctions
– A domain of discourse
– A set of predicates over the domain

• Some logics add functions over the domain as well as
predicates

– A set of connectives (and, or, not, etc)
– A set of quantifiers (forall, exists)

• Some logics (e.g. temporal) add more quantifiers

• How does propositional logic fit in this
framework?

First order logic

• A domain of discourse
• Terms over the domain

– A minimum of variables
– Sometimes constants
– Some times functions

• Formulas
– Predicates P(term, …, term)
– Connectives (and, or, not, implies)
– Quantifers (for all, exists)

Formulas and Terms
• A First-order logic is a parameterized family of logics

– Parameters
• Constants (c)
• Function symbols (f)
• Predicate symbols (p)

• L(c,f,p) is a logic for concrete c, f, and p
• Quantifiers are bound in formula, but name individuals

used in terms
• Predicates are atomic elements of formulas but are applied

to terms
• Both functions and predicates are applied to a fixed

number of arguments, called their arity.
• Constants are functions of arity 0 (implies C ⊆ F)

Definition of Terms for L(C,F,P)

• Let C be a subset of F
• Any variable is a term
• If c is a nullary function then c is a term
• If t1, … , tn are terms and f is an n-ary function

symbol, then f (t1, … ,tn) is a term
• Nothing else is a term

Atomic formula of L(C,F,P)

• If p is an n-ary predicate symbol, and t1, … , tn
are terms, then p(t1, … ,tn) is an atomic
formula

• True and False are atomic formula

Inductive Formula over L(C,F,P)

• If w is an atomic formula, then w is a Formula
• If w is a formula, then ~w is a formula
• If w and v are formula then so are

– w ∧ v
– w ∨ v
– w → v

• If x is a variable and w is a formula then so are
– Forall x . w
– Exists x . w

Free and bound variables

• Quantifiers add complexity because they bind
variables in a certain scope.

• Some variables are free because they are not
in scope of any quantifier

• A closed formula (sometimes called a
sentence) has no free variables

• A formula with at least one free variable is
called open

Truth of Formula

• We will eventually get around to defining the
truth or falsehood of a formula.

• These concepts usually apply to only “closed
formula”

• For an open formula we must be more precise
by what we mean by the free variables.

We will illustrate with a Haskell
Program

• Consists of many files
– Term.hs
– Formula.hs
– Subst.hs
– Print.hs
– etc

Terms
data Term f v = Var v
 | Fun Bool f [Term f v] deriving Eq

variables :: Term f v -> [Term f v]
variables (Var v) = [Var v]
variables (Fun s n ts) = concat (map variables ts)

newVar :: Int -> Term f String
newVar n = Var ("?" ++ intToString n)

newFun :: Int -> [Term String v] -> Term String v
newFun n ts = Fun True ("_" ++ intToString n) ts

Substitution

• Substitution replaces a variable with a term
• Its is a natural operation, but is subtle because

the quantifiers bind variables.
• Variables in the scope of a quantifier should

not be substituted
• Substitution is a monadic function

– type Subst v m = v -> m v
• Read t >>= s as the image of t

under substituion s

Subst
type Subst v m = v -> m v

emptySubst :: Monad m => Subst v m
emptySubst v = return v

-- Substituting the variable v with the term t

(|->) :: (Eq v, Monad m) => v -> m v -> Subst v m
(v |-> t) v' | v == v' = t
 | otherwise = emptySubst v'

-- Composing two substitutions
(|=>) :: Monad m => Subst v m -> Subst v m -> Subst v m
s1 |=> s2 = (s1 =<<) . s2

-- Removing a variable from a substitution
(|/->) :: (Eq v, Monad m) => v -> Subst v m -> Subst v m
(v |/-> s) v' | v == v' = return v'
 | otherwise = s v'

Formula
data Formula r f v = Rel r [Term f v]
 | Conn Cs [Formula r f v]
 | Quant Qs v (Formula r f v)
 deriving Eq
data Qs = All | Exist deriving Eq

data Cs = And | Or | Imp
 | T | F | Not
 deriving Eq
subst :: Eq v => (v -> Term f v) -> Formula r f v ->

Formula r f v
subst s (Rel r ts) = Rel r (map (s =<<) ts)
subst s (Conn c fs) = Conn c (map (subst s) fs)
subst s (Quant q v f) = Quant q v (subst (v |/-> s) f)

	First order logic
	What is new compared to propositional logic?
	Examples
	Observation
	First order logic
	Formulas and Terms
	Definition of Terms for L(C,F,P)
	Atomic formula of L(C,F,P)
	Inductive Formula over L(C,F,P)
	Free and bound variables
	Truth of Formula
	We will illustrate with a Haskell Program
	Terms
	Substitution
	Subst
	Formula

