First order logic

What is new compared to propositional logic?

- We have a collection of things.
- We call this the domain of discourse.
- We have "predicates" that state properties about the items in the collection.
- We can quantify statements in the logic
 - Universal quatification for all x ...
 - Existential qunatification- there exists x

Examples

- All natural numbers are either even or odd
 What is the domain of discourse?
- In the Family tree example (from the FiniteSet code), no one is a descendant of themselves.
 What is the predicate?
- Addition is commutative
 - What is the domain?
 - What is the preicate?

Observation

- Many logics have these distinctions
 - A domain of discourse
 - A set of predicates over the domain
 - Some logics add functions over the domain as well as predicates
 - A set of connectives (and, or, not, etc)
 - A set of quantifiers (forall, exists)
 - Some logics (e.g. temporal) add more quantifiers
- How does propositional logic fit in this framework?

First order logic

- A domain of discourse
- Terms over the domain
 - A minimum of variables
 - Sometimes constants
 - Some times functions
- Formulas
 - Predicates P(term, ..., term)
 - Connectives (and, or, not, implies)
 - Quantifers (for all, exists)

Formulas and Terms

- A First-order logic is a parameterized family of logics
 - Parameters
 - Constants (c)
 - Function symbols (f)
 - Predicate symbols (p)
- L(c,f,p) is a logic for concrete c, f, and p
- Quantifiers are bound in formula, but name individuals used in terms
- Predicates are atomic elements of formulas but are applied to terms
- Both functions and predicates are applied to a fixed number of arguments, called their arity.
- Constants are functions of arity 0 (implies $C \subseteq F$)

Definition of Terms for L(C,F,P)

- Let C be a subset of F
- Any variable is a term
- If c is a nullary function then c is a term
- If t₁, ..., t_n are terms and f is an n-ary function symbol, then f (t₁, ..., t_n) is a term
- Nothing else is a term

Atomic formula of L(C,F,P)

- If p is an n-ary predicate symbol, and t₁, ..., t_n are terms, then p(t₁, ..., t_n) is an atomic formula
- True and False are atomic formula

Inductive Formula over L(C,F,P)

- If w is an atomic formula, then w is a Formula
- If w is a formula, then ~w is a formula
- If w and v are formula then so are
 - w \wedge v
 - $w \lor v$
 - $w \rightarrow v$
- If x is a variable and w is a formula then so are
 - Forall x . w
 - Exists x . w

Free and bound variables

- Quantifiers add complexity because they bind variables in a certain scope.
- Some variables are free because they are not in scope of any quantifier
- A closed formula (sometimes called a sentence) has no free variables
- A formula with at least one free variable is called open

Truth of Formula

- We will eventually get around to defining the truth or falsehood of a formula.
- These concepts usually apply to only "closed formula"
- For an open formula we must be more precise by what we mean by the free variables.

We will illustrate with a Haskell Program

- Consists of many files
 - Term.hs
 - Formula.hs
 - Subst.hs
 - Print.hs
 - etc

Terms

```
data Term f v = Var v
| Fun Bool f [Term f v] deriving Eq
```

```
variables :: Term f v -> [Term f v]
variables (Var v) = [Var v]
variables (Fun s n ts) = concat (map variables ts)
```

```
newVar :: Int -> Term f String
newVar n = Var ("?" ++ intToString n)
```

newFun :: Int -> [Term String v] -> Term String v
newFun n ts = Fun True ("_" ++ intToString n) ts

Substitution

- Substitution replaces a variable with a term
- Its is a natural operation, but is subtle because the quantifiers bind variables.
- Variables in the scope of a quantifier should not be substituted
- Substitution is a monadic function

-type Subst v m = v -> m v

 Read t >>= s as the image of t under substituion s

Subst

```
type Subst v m = v -> m v
```

```
emptySubst :: Monad m => Subst v m
emptySubst v = return v
```

-- Substituting the variable v with the term t

```
(|->) :: (Eq v, Monad m) => v -> m v -> Subst v m
(v |-> t) v' | v == v' = t
| otherwise = emptySubst v'
```

```
-- Composing two substitutions
(|=>) :: Monad m => Subst v m -> Subst v m -> Subst v m
s1 |=> s2 = (s1 =<<) . s2
```

Formula

```
data Formula r f v = Rel r [Term f v]
                     Conn Cs [Formula r f v]
                    Quant Qs v (Formula r f v)
                    deriving Eq
data Qs = All | Exist deriving Eq
data Cs = And | Or | Imp
        | T | F | Not
        deriving Eq
subst :: Eq v => (v \rightarrow Term f v) \rightarrow Formula r f v \rightarrow
  Formula r f v
subst s (Rel r ts) = Rel r (map (s =<<) ts)</pre>
subst s (Conn c fs) = Conn c (map (subst s) fs)
subst s (Quant q v f) = Quant q v (subst (v |/-> s) f)
```