
FunLog 



Example problems 

• Combinatorial auction 
– sell all the items  

• Towers of Hanoi 
• Rectangle packing 
• Shortest route. 
• 8 queens 
• Soduko 
• Maximizing (minimizing) costs 



Finding a solution with given property 

• The property relates known entities with parts 
of the solution. 

• The property ensures that the solution is 
useable 

• The property can be expressed as a small 
higher order function. 

• The problem combines computation and 
search. 



Computational Modality 

• Evaluate (reduction) 
– Modality of languages like: C, Haskell, Datalog 

 

• Find (Existential search) 
– Modality of languages like:  Prolog, Alloy,  IDP 

 

• Combined 
– Curry: both reduction and search via Narrowing. 



Modality v.s. Expressivity via Language 

Evaluate Find 

Tuple Haskell, C, … Prolog 

FiniteSet Datalog 
 

IDP, Alloy 

Algebraic Haskell, ML, 
Curry 

Curry 

Array C, Fortran,  



Language via Algorithm 

Language Computational 
Algorithms 

Prolog Backtracking, unification 

Haskell, C, ML Reduction 
Datalog SemiNaive fixpoint 

evaluation 

Curry Narrowing 
Alloy SAT, symmetry 
IDP SAT, grounding 



FunLog 
• FunLog is a language designed for a mixed modal language 
• Data 

– Int, Bool    (eval & find) 
– Pressburger Arithmetic   (eval & find) 
– Tuples    (eval & find) 
– FiniteSets   (eval & find) 
– Algebraic Data   (eval  only) 

• Succinctness -   λ−calculus expressions and datalog formula 
(denotes  SPJ operations on sets) 

• Abstraction – lexically scoped lambda calculus can abstract 
over anything. 

• Computation modality is overloaded and determined by 
context. 



Evaluate 
 
dim i4    = [0,1,2,3] 
input     = set (i4,i4,i4) [(0,3,3),(1,1,1),(1,2,0),(2,1,0),(2,2,3),(3,3,0)] 
quadrantL =  
  [(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,2),(1,0,3),(1,1,2),(1,1,3) 
  ,(2,2,0),(2,2,1),(2,3,0),(2,3,1),(3,2,2),(3,2,3),(3,3,2),(3,3,3)]             
quadrant  = set (i4,i4,i4) quadrantL           
 
Find: grid(i,j,n). 
Where: input(i,j,n) <= grid(i,j,n). 
Such That: 
    full grid(0,j,k) & full grid(1,j,k) & full grid(2,j,k) & full grid(3,j,k)    
  & full grid(i,0,k) & full grid(i,1,k) & full grid(i,2,k) & full grid(i,3,k)      
  & full quadrant(0,i,j),grid(i,j,k) & full quadrant(1,i,j),grid(i,j,k)   
  & full quadrant(2,i,j),grid(i,j,k) & full quadrant(3,i,j),grid(i,j,k)  
  & grid(i,j,n) | (i,j) -> k . 
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Syntax 

• FunLog is a declarative language 
• Declarations introduce new named objects 

–  name(x,y) <- formula 
• Rules introduce  Finite Sets (Relations) 

–  name =  expression     
• Equations introduce values 

– Exists name Where: _ SuchThat: _   
• Introduces  Search, name is a lazy list 

• Functions (lambda abstractions) can abstract over 
any named object. 



Notation 

• Funlog uses two different notations 
– Functions (like Haskell) Expressions 
– Relations (like Prolog and Datalog) Formulas 

• The two notations use different conventions 
to determine the scope of a variable. 

• One switches from one notation to the other 
by the use of the escape ($) operator, 



Functional - Expressions 

• Expressions denote a value 
• A value can be many things 

– A primitive Int, Float, Char, String, Boolean, 
– A tuple of values (4,True,even) 
– A function 
– An algebraic data type. 
– A finite set 



Example expressions 

• Literals - 5, 2.3, "abc“ 
• Variable – x, date, tail 
• Function calls – (f x 5) 
• Lambda abstraction (\ x -> x + 3) 
• Tuples – (2,3) 
• Sets – set #(dim,width) [(2,”a”)] 
• Comprehensions  [ x + 4 | x <- [2..6] ] 



Relational - Formulas 

• A formula denotes a finite set of tuples that 
range over primitive data. 

• An Atomic formula (atom) is a relation symbol 
followed by a parenthesized list of patterns. 
– R(p1,p2,p3)  the largest subset of R where each 

element of a tuple (a,b,c) matches the patterns. 
– I.e. a matches p1, b matches p2, and c matches 

p3. 
• Compound formulas 

 



Compound formulas 

• Conjunction 
– son(y) <- father(x,y), male (y) 

• Disjunction 
– parent(x) <- father(x,y); mother(x,z) 

• Negation 
– !father(x,y) 

• Projection 
– {(y,x) <- r(x), z(x,y,z)} 



Lexical Scoping 

• The normal rules of lexical scoping apply to the 
expression part of the language. 

• Rules and formula use implicit conventions to 
determine scoping. 

•   f (xi .. ) <- rhs  
– f is introduced by the rule, and is in scope in rhs 
– Free variables in the xi are universally quantified and are 

bound in rhs 
– Free variables in rhs are existentially scoped and are bound 

in rhs. 
– So how do we “import” variables bound in an outer scope? 



The Escape ($) annotation 

transClosure f =  

     let anc(x,y)  

          <- $f(x,y);   

             $f(x,z),anc(x,y). in anc 

 

 

row n x = let f(k) <- $x($n,j,k). in f 

col n x = let f(k) <- $x(i,$n,k). in f 



Dimensions 

• Dimensions a finite sets over scalar data 
– Int, float, char, string, Bool, and enumerations 
– dim small#Int [0,1,2,3] 
– data week = Sun | Mon | Tue | Wed | Thu | Fri | Sat 

• Dimensions can be multidimensional 
– #(small,week) 

• Dimensions are used to limit the elements  in 
finite sets 
– Set #(small,week) [(0,Mon), (1,Tue)] 



Materializing functions in small 
domains 

dim i6 = [0,1,2,3,4,5] 
 
lift1 d f =  
  set (d,d) [ (x, f x) | x <- d ]  
lift2 d f =  
 set (d,d,d)  
     [ (x,y,f x y) | x <- d, y <- d ]  
 
plus = lift2 i4 (+)  
minus = lift2 i6 (-) 
 
f(x,y) <- g(x,i),h(y,j),plus(i,j,7). 



Language Adjectives 

• Expressive 
– What can the language compute 

• Succinct 
– How many key-strikes does it take to write it 

• Abstract 
– Finding patterns, naming them and re-using them 
– Functional abstraction is one example 
– Modality abstraction is another 



Datalog v.s. Relational Algebra 

• Datalog and Relational Algebra are equally 
expressive. 

• Datalog is more succinct. 
parent(x,y),parent(y, ``Tom”) 
 
vs 
 
select ((x,y)->y==``Tom”)  
       (Join (project ((y,z)->(z,y)) parent)  
              parent) 

• Neither is abstract over transitive closure 



An Expressivity Hierarchy 

Int 
0,1 … 

Bool 
T, F 

Arithmetic 
Boolean 

Tuple 

FiniteSet 
{(a,b) (c,d)} 

Relational 

+, -, * /\,  \/ ,  ~ 

<, <=, =, /= (a,b,c) 

select,project,join 

Algebraic 
List, Tree Array 

Cons, Nil 
X[i] 



Points to note 

• Its is a real hierarchy 
 

• Any point lower in the hierarchy can be lifted 
to a point higher in the hierarchy 
 

• Computations lower in the hierarchy always 
have translations into richer computations 
higher in the hierarchy 



Functional Abstraction & the  λ−calculus 

• Find a pattern, name it, and reuse it 
inRange x lo hi =  lo <= x  &&  x <= hi 
inRange 5 2 6  T 
inRange 7 2 6  F 
 

• Not all languages have this kind of abstraction 
 

anc(x,y) <- parent(x,y); parent(x,z),anc(z,y). 
 
reach(x,y) <- path(x,y); path(x,z),reach(z,y). 

 



Modality abstraction 

• A term of type Bool can be interpreted as  
– A set of reduction steps to get T or F 
– A specification for a search based tool like minisat 

 
• By using constrained types, its is possible to 

overload a term to do both things. 
• The context of the term determines its modality. 
• A value in the Evaluate modality is a value in the 

Find modality (the search is trivial) 



A language with modality abstraction 
Evaluate 
dim i10 = [0,1,2,3,4,5,6,7,8,9] 

dim colors = ["Red","Blue","Green","Yellow"] 

 

graph = [(1,2),(2,3),(3,4),(4,5), 

         (5,1),(1,6),(2,7),(3,8), 

         (4,9),(5,0),(6,8),(7,9), 

         (8,0),(9,6),(0,7)] 

          

edges = set (i10,i10) graph 

color = toSet colors 

twoHop(x,y) <- edges(x,z),edges(z,y). 

 

Find coloring(n,c) 
Where  same(x,y,c) <- color(c)coloring(x,c), 
                       edges(x,y),coloring(y,c). 

Such That: none same(x,y,c) & full ( w(n) <- coloring(n,c) ). 

This 
section 

evaluated 

This section uses 
search 

Mixed modal 
expressions 



Mixed Modality 

• Operators for each point in the Expressivity 
hierarchy are given over loaded types. 

• Mode of use determines how they are 
interpreted. 

• Automatic conversion from Evaluate -> Find 
• Conversion from Find to Evaluate is non 

deterministic. I.e. a search may find many results.  
Answers are encapsulated in a lazy list. New 
answers are computed only on demand. 



Overloaded Boolean 
class Boolean b where 
  true :: b 
  false :: b 
  isTrue :: b -> Bool 
  isFalse :: b -> Bool 
  conj:: b -> b -> b     -- conjunction 
  disj:: b -> b -> b     -- disjunction 
  neg:: b -> b           -- negation 
  imply:: b -> b -> b    -- implication 
 
 



Pressburger Arithmetic 
class (Num n) => Arithmetic n where 
  lit:: Int -> n 
  (+):: n -> n -> n 
  (-):: n -> n -> n 
  (*):: Int -> n -> n 
 
class (Arithmetic n,Boolean b) =>  
      (Relational f n b) where   
  (<) :: f n -> f n -> f b 
  (<=):: f n -> f n -> f b 
  (=) :: f n -> f n -> f b 
  (/=) :: f n -> f n -> f b 

 



FiniteSet Examples 
select::  
   (Boolean b) =>  
   ([Int] -> Bool) -> FiniteSet b -> FiniteSet b 
project ::  
   (Boolean b) =>  
   [Int] -> FiniteSet b -> FiniteSet b 
join:: 
   (Boolean b) =>  
   Int -> FiniteSet b -> FiniteSet b -> FiniteSet b 
none:: (Boolean b) => FiniteSet b -> b 
some:: (Boolean b) => FiniteSet b -> b 
funDep::  
   (Boolean b) =>  
   [Int] -> [Int] -> FiniteSet b -> b 



Using the hierarchy 

• Every term has an overloaded type. 
• Every instance of the overloaded type determines a 

computation strategy. 
 

range e lo hi =  
    conj (lo <= e) (e <= hi) 
 
range::  
 (Relational f n b, Boolean (f b)) => 
f n -> f n -> f n -> f b 



instance Boolean(Value Bool) 
instance Relational Value Int Bool 

Given the overloaded type 
 
range::  
 (Relational f n b, Boolean (f b)) => 
f n -> f n -> f n -> f b 

 
Used at the instances above 
 
range 6 4 10  ->    True 

 



instance Boolean(SMT Bool) 
instance Relational SMT Int Bool 

Given the overloaded type 
 
range::  
 (Relational f n b, Boolean (f b)) => f 
n -> f n -> f n -> f b 

 
Used at the instances above 
 
range x1 x2 x3    ->  
(x2 <= x1) /\ (x1 <= x3) 



Mixed Computation 

Overloaded xs, conj, true,  /= 
Not overloaded less 
 
distinct xs =  
    foldr conj true  
    [i /= j | i<-xs, j<-xs, less i j] 
 
distinct [x1,x2,x3] :: SMT Bool 
(x1 /= x2) /\ (x1 /= x3) /\ (x2 /= x3) 

 



Current points in the hierarchy 

Int 
0,1 … 

Bool 
T, F 

Arithmetic 
Boolean 

Tuple 

FiniteSet 
{(a,b) (c,d)} 

Relational 

Algebraic 
List, Tree Array 

Int 
Bool 

Value Int 

Sat 

SMT Int 
SMT Bool 

Value Int 



Conclusions 
• Abstracting over computational modality is a good thing 
• Eval modality can always be lifted to Find 
• Find can be lifted to Eval using lazy lists 
• Constrained types isolate exactly the expressivity needed to 

state the problem 
• Use the lowest tool (known instance of the constrained 

type) to solve the problem 
• Functional abstraction is a great glue to tie together many 

different approaches. 
• Materializing functions in small domain lets us add 

arithmetic to the FiniteSet expressivity point for free. 
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