
FunLog

Example problems

• Combinatorial auction
– sell all the items

• Towers of Hanoi
• Rectangle packing
• Shortest route.
• 8 queens
• Soduko
• Maximizing (minimizing) costs

Finding a solution with given property

• The property relates known entities with parts
of the solution.

• The property ensures that the solution is
useable

• The property can be expressed as a small
higher order function.

• The problem combines computation and
search.

Computational Modality

• Evaluate (reduction)
– Modality of languages like: C, Haskell, Datalog

• Find (Existential search)
– Modality of languages like: Prolog, Alloy, IDP

• Combined
– Curry: both reduction and search via Narrowing.

Modality v.s. Expressivity via Language

Evaluate Find

Tuple Haskell, C, … Prolog

FiniteSet Datalog

IDP, Alloy

Algebraic Haskell, ML,
Curry

Curry

Array C, Fortran,

Language via Algorithm

Language Computational
Algorithms

Prolog Backtracking, unification

Haskell, C, ML Reduction
Datalog SemiNaive fixpoint

evaluation

Curry Narrowing
Alloy SAT, symmetry
IDP SAT, grounding

FunLog
• FunLog is a language designed for a mixed modal language
• Data

– Int, Bool (eval & find)
– Pressburger Arithmetic (eval & find)
– Tuples (eval & find)
– FiniteSets (eval & find)
– Algebraic Data (eval only)

• Succinctness - λ−calculus expressions and datalog formula
(denotes SPJ operations on sets)

• Abstraction – lexically scoped lambda calculus can abstract
over anything.

• Computation modality is overloaded and determined by
context.

Evaluate

dim i4 = [0,1,2,3]
input = set (i4,i4,i4) [(0,3,3),(1,1,1),(1,2,0),(2,1,0),(2,2,3),(3,3,0)]
quadrantL =
 [(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,2),(1,0,3),(1,1,2),(1,1,3)
 ,(2,2,0),(2,2,1),(2,3,0),(2,3,1),(3,2,2),(3,2,3),(3,3,2),(3,3,3)]
quadrant = set (i4,i4,i4) quadrantL

Find: grid(i,j,n).
Where: input(i,j,n) <= grid(i,j,n).
Such That:
 full grid(0,j,k) & full grid(1,j,k) & full grid(2,j,k) & full grid(3,j,k)
 & full grid(i,0,k) & full grid(i,1,k) & full grid(i,2,k) & full grid(i,3,k)
 & full quadrant(0,i,j),grid(i,j,k) & full quadrant(1,i,j),grid(i,j,k)
 & full quadrant(2,i,j),grid(i,j,k) & full quadrant(3,i,j),grid(i,j,k)
 & grid(i,j,n) | (i,j) -> k .

3

1 0

0 3

0

Syntax

• FunLog is a declarative language
• Declarations introduce new named objects

– name(x,y) <- formula
• Rules introduce Finite Sets (Relations)

– name = expression
• Equations introduce values

– Exists name Where: _ SuchThat: _
• Introduces Search, name is a lazy list

• Functions (lambda abstractions) can abstract over
any named object.

Notation

• Funlog uses two different notations
– Functions (like Haskell) Expressions
– Relations (like Prolog and Datalog) Formulas

• The two notations use different conventions
to determine the scope of a variable.

• One switches from one notation to the other
by the use of the escape ($) operator,

Functional - Expressions

• Expressions denote a value
• A value can be many things

– A primitive Int, Float, Char, String, Boolean,
– A tuple of values (4,True,even)
– A function
– An algebraic data type.
– A finite set

Example expressions

• Literals - 5, 2.3, "abc“
• Variable – x, date, tail
• Function calls – (f x 5)
• Lambda abstraction (\ x -> x + 3)
• Tuples – (2,3)
• Sets – set #(dim,width) [(2,”a”)]
• Comprehensions [x + 4 | x <- [2..6]]

Relational - Formulas

• A formula denotes a finite set of tuples that
range over primitive data.

• An Atomic formula (atom) is a relation symbol
followed by a parenthesized list of patterns.
– R(p1,p2,p3) the largest subset of R where each

element of a tuple (a,b,c) matches the patterns.
– I.e. a matches p1, b matches p2, and c matches

p3.
• Compound formulas

Compound formulas

• Conjunction
– son(y) <- father(x,y), male (y)

• Disjunction
– parent(x) <- father(x,y); mother(x,z)

• Negation
– !father(x,y)

• Projection
– {(y,x) <- r(x), z(x,y,z)}

Lexical Scoping

• The normal rules of lexical scoping apply to the
expression part of the language.

• Rules and formula use implicit conventions to
determine scoping.

• f (xi ..) <- rhs
– f is introduced by the rule, and is in scope in rhs
– Free variables in the xi are universally quantified and are

bound in rhs
– Free variables in rhs are existentially scoped and are bound

in rhs.
– So how do we “import” variables bound in an outer scope?

The Escape ($) annotation

transClosure f =

 let anc(x,y)

 <- $f(x,y);

 $f(x,z),anc(x,y). in anc

row n x = let f(k) <- $x($n,j,k). in f

col n x = let f(k) <- $x(i,$n,k). in f

Dimensions

• Dimensions a finite sets over scalar data
– Int, float, char, string, Bool, and enumerations
– dim small#Int [0,1,2,3]
– data week = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• Dimensions can be multidimensional
– #(small,week)

• Dimensions are used to limit the elements in
finite sets
– Set #(small,week) [(0,Mon), (1,Tue)]

Materializing functions in small
domains

dim i6 = [0,1,2,3,4,5]

lift1 d f =
 set (d,d) [(x, f x) | x <- d]
lift2 d f =
 set (d,d,d)
 [(x,y,f x y) | x <- d, y <- d]

plus = lift2 i4 (+)
minus = lift2 i6 (-)

f(x,y) <- g(x,i),h(y,j),plus(i,j,7).

Language Adjectives

• Expressive
– What can the language compute

• Succinct
– How many key-strikes does it take to write it

• Abstract
– Finding patterns, naming them and re-using them
– Functional abstraction is one example
– Modality abstraction is another

Datalog v.s. Relational Algebra

• Datalog and Relational Algebra are equally
expressive.

• Datalog is more succinct.
parent(x,y),parent(y, ``Tom”)

vs

select ((x,y)->y==``Tom”)
 (Join (project ((y,z)->(z,y)) parent)
 parent)

• Neither is abstract over transitive closure

An Expressivity Hierarchy

Int
0,1 …

Bool
T, F

Arithmetic
Boolean

Tuple

FiniteSet
{(a,b) (c,d)}

Relational

+, -, * /\, \/ , ~

<, <=, =, /= (a,b,c)

select,project,join

Algebraic
List, Tree Array

Cons, Nil
X[i]

Points to note

• Its is a real hierarchy

• Any point lower in the hierarchy can be lifted
to a point higher in the hierarchy

• Computations lower in the hierarchy always
have translations into richer computations
higher in the hierarchy

Functional Abstraction & the λ−calculus

• Find a pattern, name it, and reuse it
inRange x lo hi = lo <= x && x <= hi
inRange 5 2 6 T
inRange 7 2 6 F

• Not all languages have this kind of abstraction

anc(x,y) <- parent(x,y); parent(x,z),anc(z,y).

reach(x,y) <- path(x,y); path(x,z),reach(z,y).

Modality abstraction

• A term of type Bool can be interpreted as
– A set of reduction steps to get T or F
– A specification for a search based tool like minisat

• By using constrained types, its is possible to

overload a term to do both things.
• The context of the term determines its modality.
• A value in the Evaluate modality is a value in the

Find modality (the search is trivial)

A language with modality abstraction
Evaluate
dim i10 = [0,1,2,3,4,5,6,7,8,9]

dim colors = ["Red","Blue","Green","Yellow"]

graph = [(1,2),(2,3),(3,4),(4,5),

 (5,1),(1,6),(2,7),(3,8),

 (4,9),(5,0),(6,8),(7,9),

 (8,0),(9,6),(0,7)]

edges = set (i10,i10) graph

color = toSet colors

twoHop(x,y) <- edges(x,z),edges(z,y).

Find coloring(n,c)
Where same(x,y,c) <- color(c)coloring(x,c),
 edges(x,y),coloring(y,c).

Such That: none same(x,y,c) & full (w(n) <- coloring(n,c)).

This
section

evaluated

This section uses
search

Mixed modal
expressions

Mixed Modality

• Operators for each point in the Expressivity
hierarchy are given over loaded types.

• Mode of use determines how they are
interpreted.

• Automatic conversion from Evaluate -> Find
• Conversion from Find to Evaluate is non

deterministic. I.e. a search may find many results.
Answers are encapsulated in a lazy list. New
answers are computed only on demand.

Overloaded Boolean
class Boolean b where
 true :: b
 false :: b
 isTrue :: b -> Bool
 isFalse :: b -> Bool
 conj:: b -> b -> b -- conjunction
 disj:: b -> b -> b -- disjunction
 neg:: b -> b -- negation
 imply:: b -> b -> b -- implication

Pressburger Arithmetic
class (Num n) => Arithmetic n where
 lit:: Int -> n
 (+):: n -> n -> n
 (-):: n -> n -> n
 (*):: Int -> n -> n

class (Arithmetic n,Boolean b) =>
 (Relational f n b) where
 (<) :: f n -> f n -> f b
 (<=):: f n -> f n -> f b
 (=) :: f n -> f n -> f b
 (/=) :: f n -> f n -> f b

FiniteSet Examples
select::
 (Boolean b) =>
 ([Int] -> Bool) -> FiniteSet b -> FiniteSet b
project ::
 (Boolean b) =>
 [Int] -> FiniteSet b -> FiniteSet b
join::
 (Boolean b) =>
 Int -> FiniteSet b -> FiniteSet b -> FiniteSet b
none:: (Boolean b) => FiniteSet b -> b
some:: (Boolean b) => FiniteSet b -> b
funDep::
 (Boolean b) =>
 [Int] -> [Int] -> FiniteSet b -> b

Using the hierarchy

• Every term has an overloaded type.
• Every instance of the overloaded type determines a

computation strategy.

range e lo hi =
 conj (lo <= e) (e <= hi)

range::
 (Relational f n b, Boolean (f b)) =>
f n -> f n -> f n -> f b

instance Boolean(Value Bool)
instance Relational Value Int Bool

Given the overloaded type

range::
 (Relational f n b, Boolean (f b)) =>
f n -> f n -> f n -> f b

Used at the instances above

range 6 4 10 -> True

instance Boolean(SMT Bool)
instance Relational SMT Int Bool

Given the overloaded type

range::
 (Relational f n b, Boolean (f b)) => f
n -> f n -> f n -> f b

Used at the instances above

range x1 x2 x3 ->
(x2 <= x1) /\ (x1 <= x3)

Mixed Computation

Overloaded xs, conj, true, /=
Not overloaded less

distinct xs =
 foldr conj true
 [i /= j | i<-xs, j<-xs, less i j]

distinct [x1,x2,x3] :: SMT Bool
(x1 /= x2) /\ (x1 /= x3) /\ (x2 /= x3)

Current points in the hierarchy

Int
0,1 …

Bool
T, F

Arithmetic
Boolean

Tuple

FiniteSet
{(a,b) (c,d)}

Relational

Algebraic
List, Tree Array

Int
Bool

Value Int

Sat

SMT Int
SMT Bool

Value Int

Conclusions
• Abstracting over computational modality is a good thing
• Eval modality can always be lifted to Find
• Find can be lifted to Eval using lazy lists
• Constrained types isolate exactly the expressivity needed to

state the problem
• Use the lowest tool (known instance of the constrained

type) to solve the problem
• Functional abstraction is a great glue to tie together many

different approaches.
• Materializing functions in small domain lets us add

arithmetic to the FiniteSet expressivity point for free.

	FunLog
	Example problems
	Finding a solution with given property
	Computational Modality
	Modality v.s. Expressivity via Language
	Language via Algorithm
	FunLog
	Slide Number 8
	Syntax
	Notation
	Functional - Expressions
	Example expressions
	Relational - Formulas
	Compound formulas
	Lexical Scoping
	The Escape ($) annotation
	Dimensions
	Materializing functions in small domains
	Language Adjectives
	Datalog v.s. Relational Algebra
	An Expressivity Hierarchy
	Points to note
	Functional Abstraction & the l-calculus
	Modality abstraction
	A language with modality abstraction
	Mixed Modality
	Overloaded Boolean
	Pressburger Arithmetic
	FiniteSet Examples
	Using the hierarchy
	instance Boolean(Value Bool)�instance Relational Value Int Bool
	instance Boolean(SMT Bool)�instance Relational SMT Int Bool
	Mixed Computation
	Current points in the hierarchy
	Conclusions

