
Equivalences  and  Normal Forms 

Logic and Programming Languages 
Lecture #2 



Equivalences 

• Equivalences play a large role in building 
efficient  algorithms  for logical systems. 

• How do we write programs that 
– Test equivalence? 
– Construct transformations where the output is 

equivalent to the input? 

It is often easy to make mistakes, so how do we 
test such programs? 



Writing a program 
• Take an equivalence as a rule. 
• Now apply it to every sub-term in a logical formula 
• At least two possibilities 

– Top Down 
– Bottom Up 

 
• For example take the equivalences that 

–  ~(~x) = x 
– ~(x /\ y) = ~x \/ ~y 
– ~(x \/ y) = ~x /\ ~ y 
– ~T = F 
– ~F = T 



First a one-level program 
not1 TruthP = AbsurdP 
not1 AbsurdP = TruthP 
not1 (NotP x) = x 
not1 (AndP x y) =  
   OrP (not1 x) (not1 y) 
not1 (OrP x y) =  
   AndP (not1 x) (not1 y) 
not1 (ImpliesP x y) =  
   AndP x (not1 y) 
not1 x = NotP x 



Apply it bottom up 
nnf x = 
  case x of  
    AbsurdP -> AbsurdP 
    TruthP  -> TruthP 
    (LetterP x) -> LetterP x 
    (AndP x y) -> AndP (nnf x) (nnf y) 
    (OrP x y) -> OrP (nnf x) (nnf y) 
    (ImpliesP x y) -> nnf(OrP (NotP x) y) 
    (NotP x) -> not1(nnf x) 

 
• Note the recursive calls are “inside” the calls to the one-

level transformer not1 



Consider the equivalence 

• A → B ≅ ~A ∨ B 
 

implies1 x y = OrP (not1 x) y 

 
• Now lets apply it top down 



Top down 
elimImplies x = 
  case x of 
    AbsurdP -> AbsurdP 
    TruthP  -> TruthP 
    (LetterP x) -> LetterP x 
    (AndP x y) ->  
        AndP (elimImplies x) (elimImplies y) 
    (OrP x y) ->  
        OrP (elimImplies x) (elimImplies y) 
    (ImpliesP x y) -> elimImplies(implies1 x y) 
    (NotP x) -> NotP (elimImplies x) 

 
• Note the one-level call implies1 inside the recursive calls 



Normal Forms 

• Normal forms play a large role in many 
algorithms 

• Some things to consider 
– What structural properties does a normal form 

have 
– Are their efficient data structures to capture 

normal forms 
– Are their efficient algorithms to compute them 



CNF 

• Conjunctive Normal Form plays a role in many 
algorithms 
– Tautology checking 
– SAT solving 

• A term in CNF  has all its conjunctions (AndP) at 
the top level. Each conjunct is a second level 
disjunct (OrP) and every disjunct is a literal 

• A literal is  TruthP, AbsurdP, (LetterP x), or 
NotP(LetterP x) 



Example 

• (~p1 \/ ~p4 \/ p2) /\ 
•  (~p1 \/ ~p4 \/ p4) /\ 
•  (~T \/ p2) /\   
• (~T \/ p4) 



[[ Literal ]] 

• We often represent terms in CNF as a list of list of 
literals. Writing this 

(~p1 \/ ~p4 \/ p2) /\ 
 (~p1 \/ ~p4 \/ p4) /\ 
 (~T \/ p2) /\   
(~T \/ p4) 

 
• As  [[~p1,~p4,p2],[~p1,~p4,p4],[~T,p2],[~T,p4]] 
• How do we represent T  or  F ? 



An algorithm 

Coble gives an algorithm in 4 steps (or passes) 
1. Eliminate implication 
2. Push negations inside so they are only on literals 
3. Apply the distributive laws 

1. A ∨ (B ∧ C) ≅ (A ∨  B) ∧ (A ∨  C) 
2. (B ∧ C)  ∨  A ≅  (B ∨  A) ∧ (C ∨  A) 
3. (A ∧ B) ∨ (C ∧ D) ≅ (A ∨  C) ∧ (A ∨  D) ∧ (B ∨  C) ∧ (B ∨  D) 

4. Simplify the results 
1. We will write a Haskell Program 
 



Several passes 
cnf3 :: Eq n => Prop n -> [[Prop n]] 
cnf3 x = (simple .  
          flatten .   
          pushDisj .  
          nnf . elimImplies) x 
 
cnf4 :: Prop t -> Prop t 
cnf4 = pushDisj . nnf . elimImplies 
  
• Note the use of a function for each pass and the 

change in representation  [[Prop n]]  (using flatten) in 
the definition of cnf3 for CNF formula. 



pushDisj x =   case x of 
    OrP x y -> case (pushDisj x,pushDisj y) of 
      (AndP a b,AndP c d) ->  
         AndP (pushDisj (OrP a c)) 
              (AndP (pushDisj (OrP a d)) 
                    (AndP (pushDisj (OrP b c)) 
                    (pushDisj (OrP b d)))) 
      (a,AndP b c) ->  
         AndP (pushDisj (OrP a b))  
              (pushDisj (OrP a c))                    
      (AndP b c,a) ->  
         AndP (pushDisj (OrP b a)) 
              (pushDisj (OrP c a))  
      (x,y) -> OrP x y 
    AbsurdP -> AbsurdP 
    TruthP  -> TruthP 
    (LetterP x) -> LetterP x 
    (AndP x y) -> AndP (pushDisj x) (pushDisj y) 
    (ImpliesP x y) -> pushDisj(OrP (NotP x) y) 
    (NotP x) -> NotP (pushDisj x) 

 A ∨ (B ∧ C) ≅ (A ∨  B) ∧ (A ∨  C) 
(B ∧ C)  ∨  A ≅  (B ∨  A) ∧ (C ∨  A) 
(A ∧ B) ∨ (C ∧ D) ≅ (A ∨  C) ∧ (A ∨  D) ∧ (B ∨  C) ∧ (B ∨  D) 



Change representation 
-- assumes all disj’s are pushed inside 
-- so only literals appear inside OrP 
flatten:: Prop n -> [[Prop n]] 
flatten (AndP x y) = flatten x ++ flatten y 
flatten (OrP x y) = [collect [x,y]] 
  where collect [] = [] 
        collect (OrP x y : zs) =  
           collect (x:y:zs) 
        collect (z:zs) = z : collect zs 
flatten x = [[x]] 



Simplify 

• Simplify (or remove disjunctions) that are 
always true 

• [p1, p3 , ~p1]     remove 
• [p1, T]   remove 
• [p1,p2, p3]   remove if there is another 

disjunction that subsumes it like [p1,p3] 



simple:: Eq n =>  
   [[Prop n]] -> [[Prop n]] 
simple [] = [] 
simple (x:xs)  
  | elem TruthP x = simple xs 
  | conjugatePair x = simple xs 
  | subsumes xs x = simple xs 
  | otherwise = x : simple xs 
 



A principled approach 

• Study the equivalence 
-(A ∧ B) ∨ (C ∧ D) ≅ 
 (A ∨  C) ∧ (A ∨  D) ∧ (B ∨  C) ∧ (B ∨  D) 

 
• Think of each disjunct as a list, then the result can 

be computed like this 
•  [A,B] \/ [C,D] ==  /\ [ x \/ y | x <- [A,B], y <- [C,D]] 

 
• Take as input 2 lists of disjunctions, and apply the 

cross product rule 



Representation 

• process :: [Prop a] -> [[Prop a]] 
 

• Think of the input as a list of disjunctions, so 
we want to take the cross product of all these 
disjunctions. 

•  If there are n-disjunctions then we’ll have  nn 
literals in each resulting inner disjunction 

• We’ll also have the product of the size of each 
disjunction as the number of conjunctions. 
 



Applying Equivalences 

• As we process the list of disjunctions we apply 
equivalences as we go. 



Positive cases 
process [] = [[]] 
process (p:ps) =  
  case p of 
   (AbsurdP) -> map (AbsurdP:) (process ps) 
   (TruthP)  -> map (TruthP:) (process ps) 
   (LetterP _) -> map (p:) (process ps) 
   (AndP x y) -> process (x:ps) ++  
                 process (y:ps) 
   (OrP x y)  -> process (x : y : ps) 
   (ImpliesP x y) -> process(NotP x : y : ps)  



Negative cases 
process [] = [[]] 
process (p:ps) =  
  case p of 
   . . .    
   (NotP z) ->  
       case z of  
          (AbsurdP) -> map (TruthP:) (process ps) 
          (TruthP)  -> map (AbsurdP:) (process ps) 
          (LetterP _) -> map (p:) (process ps) 
          (AndP x y) -> process (NotP x : NotP y : ps) 
          (OrP x y) -> process (NotP x:ps) ++  
                       process (NotP y:ps) 
          (ImpliesP x y) -> process (x:ps) ++ 
                            process (NotP y:ps) 
          (NotP p2)      -> process (p2:ps)  



Observations 

• How big can a answer get? What is the 
complexity? 

• Many of the cases are very similar. 
• What are the three cases? 
• Can we exploit this to write a shorter 

program? 
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