
Equivalences and Normal Forms

Logic and Programming Languages
Lecture #2

Equivalences

• Equivalences play a large role in building
efficient algorithms for logical systems.

• How do we write programs that
– Test equivalence?
– Construct transformations where the output is

equivalent to the input?

It is often easy to make mistakes, so how do we
test such programs?

Writing a program
• Take an equivalence as a rule.
• Now apply it to every sub-term in a logical formula
• At least two possibilities

– Top Down
– Bottom Up

• For example take the equivalences that

– ~(~x) = x
– ~(x /\ y) = ~x \/ ~y
– ~(x \/ y) = ~x /\ ~ y
– ~T = F
– ~F = T

First a one-level program
not1 TruthP = AbsurdP
not1 AbsurdP = TruthP
not1 (NotP x) = x
not1 (AndP x y) =
 OrP (not1 x) (not1 y)
not1 (OrP x y) =
 AndP (not1 x) (not1 y)
not1 (ImpliesP x y) =
 AndP x (not1 y)
not1 x = NotP x

Apply it bottom up
nnf x =
 case x of
 AbsurdP -> AbsurdP
 TruthP -> TruthP
 (LetterP x) -> LetterP x
 (AndP x y) -> AndP (nnf x) (nnf y)
 (OrP x y) -> OrP (nnf x) (nnf y)
 (ImpliesP x y) -> nnf(OrP (NotP x) y)
 (NotP x) -> not1(nnf x)

• Note the recursive calls are “inside” the calls to the one-

level transformer not1

Consider the equivalence

• A → B ≅ ~A ∨ B

implies1 x y = OrP (not1 x) y

• Now lets apply it top down

Top down
elimImplies x =
 case x of
 AbsurdP -> AbsurdP
 TruthP -> TruthP
 (LetterP x) -> LetterP x
 (AndP x y) ->
 AndP (elimImplies x) (elimImplies y)
 (OrP x y) ->
 OrP (elimImplies x) (elimImplies y)
 (ImpliesP x y) -> elimImplies(implies1 x y)
 (NotP x) -> NotP (elimImplies x)

• Note the one-level call implies1 inside the recursive calls

Normal Forms

• Normal forms play a large role in many
algorithms

• Some things to consider
– What structural properties does a normal form

have
– Are their efficient data structures to capture

normal forms
– Are their efficient algorithms to compute them

CNF

• Conjunctive Normal Form plays a role in many
algorithms
– Tautology checking
– SAT solving

• A term in CNF has all its conjunctions (AndP) at
the top level. Each conjunct is a second level
disjunct (OrP) and every disjunct is a literal

• A literal is TruthP, AbsurdP, (LetterP x), or
NotP(LetterP x)

Example

• (~p1 \/ ~p4 \/ p2) /\
• (~p1 \/ ~p4 \/ p4) /\
• (~T \/ p2) /\
• (~T \/ p4)

[[Literal]]

• We often represent terms in CNF as a list of list of
literals. Writing this

(~p1 \/ ~p4 \/ p2) /\
 (~p1 \/ ~p4 \/ p4) /\
 (~T \/ p2) /\
(~T \/ p4)

• As [[~p1,~p4,p2],[~p1,~p4,p4],[~T,p2],[~T,p4]]
• How do we represent T or F ?

An algorithm

Coble gives an algorithm in 4 steps (or passes)
1. Eliminate implication
2. Push negations inside so they are only on literals
3. Apply the distributive laws

1. A ∨ (B ∧ C) ≅ (A ∨ B) ∧ (A ∨ C)
2. (B ∧ C) ∨ A ≅ (B ∨ A) ∧ (C ∨ A)
3. (A ∧ B) ∨ (C ∧ D) ≅ (A ∨ C) ∧ (A ∨ D) ∧ (B ∨ C) ∧ (B ∨ D)

4. Simplify the results
1. We will write a Haskell Program

Several passes
cnf3 :: Eq n => Prop n -> [[Prop n]]
cnf3 x = (simple .
 flatten .
 pushDisj .
 nnf . elimImplies) x

cnf4 :: Prop t -> Prop t
cnf4 = pushDisj . nnf . elimImplies

• Note the use of a function for each pass and the

change in representation [[Prop n]] (using flatten) in
the definition of cnf3 for CNF formula.

pushDisj x = case x of
 OrP x y -> case (pushDisj x,pushDisj y) of
 (AndP a b,AndP c d) ->
 AndP (pushDisj (OrP a c))
 (AndP (pushDisj (OrP a d))
 (AndP (pushDisj (OrP b c))
 (pushDisj (OrP b d))))
 (a,AndP b c) ->
 AndP (pushDisj (OrP a b))
 (pushDisj (OrP a c))
 (AndP b c,a) ->
 AndP (pushDisj (OrP b a))
 (pushDisj (OrP c a))
 (x,y) -> OrP x y
 AbsurdP -> AbsurdP
 TruthP -> TruthP
 (LetterP x) -> LetterP x
 (AndP x y) -> AndP (pushDisj x) (pushDisj y)
 (ImpliesP x y) -> pushDisj(OrP (NotP x) y)
 (NotP x) -> NotP (pushDisj x)

 A ∨ (B ∧ C) ≅ (A ∨ B) ∧ (A ∨ C)
(B ∧ C) ∨ A ≅ (B ∨ A) ∧ (C ∨ A)
(A ∧ B) ∨ (C ∧ D) ≅ (A ∨ C) ∧ (A ∨ D) ∧ (B ∨ C) ∧ (B ∨ D)

Change representation
-- assumes all disj’s are pushed inside
-- so only literals appear inside OrP
flatten:: Prop n -> [[Prop n]]
flatten (AndP x y) = flatten x ++ flatten y
flatten (OrP x y) = [collect [x,y]]
 where collect [] = []
 collect (OrP x y : zs) =
 collect (x:y:zs)
 collect (z:zs) = z : collect zs
flatten x = [[x]]

Simplify

• Simplify (or remove disjunctions) that are
always true

• [p1, p3 , ~p1] remove
• [p1, T] remove
• [p1,p2, p3] remove if there is another

disjunction that subsumes it like [p1,p3]

simple:: Eq n =>
 [[Prop n]] -> [[Prop n]]
simple [] = []
simple (x:xs)
 | elem TruthP x = simple xs
 | conjugatePair x = simple xs
 | subsumes xs x = simple xs
 | otherwise = x : simple xs

A principled approach

• Study the equivalence
-(A ∧ B) ∨ (C ∧ D) ≅
 (A ∨ C) ∧ (A ∨ D) ∧ (B ∨ C) ∧ (B ∨ D)

• Think of each disjunct as a list, then the result can

be computed like this
• [A,B] \/ [C,D] == /\ [x \/ y | x <- [A,B], y <- [C,D]]

• Take as input 2 lists of disjunctions, and apply the

cross product rule

Representation

• process :: [Prop a] -> [[Prop a]]

• Think of the input as a list of disjunctions, so
we want to take the cross product of all these
disjunctions.

• If there are n-disjunctions then we’ll have nn
literals in each resulting inner disjunction

• We’ll also have the product of the size of each
disjunction as the number of conjunctions.

Applying Equivalences

• As we process the list of disjunctions we apply
equivalences as we go.

Positive cases
process [] = [[]]
process (p:ps) =
 case p of
 (AbsurdP) -> map (AbsurdP:) (process ps)
 (TruthP) -> map (TruthP:) (process ps)
 (LetterP _) -> map (p:) (process ps)
 (AndP x y) -> process (x:ps) ++
 process (y:ps)
 (OrP x y) -> process (x : y : ps)
 (ImpliesP x y) -> process(NotP x : y : ps)

Negative cases
process [] = [[]]
process (p:ps) =
 case p of
 . . .
 (NotP z) ->
 case z of
 (AbsurdP) -> map (TruthP:) (process ps)
 (TruthP) -> map (AbsurdP:) (process ps)
 (LetterP _) -> map (p:) (process ps)
 (AndP x y) -> process (NotP x : NotP y : ps)
 (OrP x y) -> process (NotP x:ps) ++
 process (NotP y:ps)
 (ImpliesP x y) -> process (x:ps) ++
 process (NotP y:ps)
 (NotP p2) -> process (p2:ps)

Observations

• How big can a answer get? What is the
complexity?

• Many of the cases are very similar.
• What are the three cases?
• Can we exploit this to write a shorter

program?

	Equivalences and Normal Forms
	Equivalences
	Writing a program
	First a one-level program
	Apply it bottom up
	Consider the equivalence
	Top down
	Normal Forms
	CNF
	Example
	[[Literal]]
	An algorithm
	Several passes
	Slide Number 14
	Change representation
	Simplify
	Slide Number 17
	A principled approach
	Representation
	Applying Equivalences
	Positive cases
	Negative cases
	Observations

