Equivalences and Normal Forms

Logic and Programming Languages
 Lecture \#2

Equivalences

- Equivalences play a large role in building efficient algorithms for logical systems.
- How do we write programs that
- Test equivalence?
- Construct transformations where the output is equivalent to the input?
It is often easy to make mistakes, so how do we test such programs?

Writing a program

- Take an equivalence as a rule.
- Now apply it to every sub-term in a logical formula
- At least two possibilities
- Top Down
- Bottom Up
- For example take the equivalences that
$-\sim(\sim x)=x$
$-\sim^{\sim}(x / \wedge y)={ }^{\sim} x \backslash{ }^{\sim} y$
$-\sim(x \backslash y)={ }^{\sim} x / \backslash \sim y$
$-{ }^{\sim} \mathrm{T}=\mathrm{F}$
$-\sim \mathcal{F}=T$

First a one-level program

not1 TruthP = AbsurdP
not1 AbsurdP = TruthP
not1 (NotP x) $=x$
not1 (AndP x y) =
OrP (not1 x) (not1 y)
not1 (OrP x y) $=$
AndP (not1 x) (not1 y)
not1 (ImpliesP x y) =
AndP x (not1 y)
not1 $x=\operatorname{NotP} x$

Apply it bottom up

nnf $x=$
case x of
AbsurdP -> AbsurdP
TruthP -> TruthP
(LetterP x) -> LetterP x
(AndP x y) \rightarrow AndP (nnf x) (nnf y)
(OrP x y) -> OrP (nnf x) (nnf y)
(ImpliesP x y) -> nnf(OrP (NotP x) y)
(NotP x) -> not1(nnf x)

- Note the recursive calls are "inside" the calls to the onelevel transformer not1

Consider the equivalence

- $A \rightarrow B \cong \sim A \vee B$
implies1 x y = OrP (not1 x) y
- Now lets apply it top down

Top down

elimImplies $x=$
case x of
AbsurdP -> AbsurdP
TruthP -> TruthP
(LetterP x) -> LetterP x
(AndP x y) ->
AndP (elimImplies x) (elimImplies y)
(OrP x y) ->
OrP (elimImplies x) (elimImplies y)
(ImpliesP x y) -> elimImplies(implies1 x y) (NotP x) -> NotP (elimImplies x)

- Note the one-level call implies1 inside the recursive calls

Normal Forms

- Normal forms play a large role in many algorithms
- Some things to consider
- What structural properties does a normal form have
- Are their efficient data structures to capture normal forms
- Are their efficient algorithms to compute them

CNF

- Conjunctive Normal Form plays a role in many algorithms
- Tautology checking
- SAT solving
- A term in CNF has all its conjunctions (AndP) at the top level. Each conjunct is a second level disjunct (OrP) and every disjunct is a literal
- A literal is TruthP, AbsurdP, (LetterP x), or NotP(LetterP x)

Example

- (~p1 V ~p4 V p2) \wedge
- ($\sim p 1 \bigvee \sim p 4 \bigvee p 4) / \wedge$
- ($\sim T V p 2) / \backslash$
- (~T V p 4$)$

[[Literal]]

- We often represent terms in CNF as a list of list of literals. Writing this
($\sim 1 \vee \sim p 4 \vee p 2) \wedge$
($\sim 1 \vee \sim p 4 \vee p 4) \wedge$
($\sim \mathrm{T} V \mathrm{p} 2) \wedge$
($\sim \mathrm{T} \vee \mathrm{p} 4$)
- As [[~p1,~p4,p2],[~p1,~p4,p4],[~T,p2],[~T,p4]]
- How do we represent T or F ?

An algorithm

Coble gives an algorithm in 4 steps (or passes)

1. Eliminate implication
2. Push negations inside so they are only on literals
3. Apply the distributive laws
4. $A \vee(B \wedge C) \cong(A \vee B) \wedge(A \vee C)$
5. $(B \wedge C) \vee A \cong(B \vee A) \wedge(C \vee A)$
6. $(A \wedge B) \vee(C \wedge D) \cong(A \vee C) \wedge(A \vee D) \wedge(B \vee C) \wedge(B \vee D)$
7. Simplify the results
8. We will write a Haskell Program

Several passes

cnf3 :: Eq n => Prop n -> [[Prop n]]
cnf3 $x=$ (simple .
flatten.
pushDisj.
nnf . elimImplies) x
cnf4 :: Prop t -> Prop t cnf4 = pushDisj . nnf . elimImplies

- Note the use of a function for each pass and the change in representation [[Prop n]] (using flatten) in the definition of cnf3 for CNF formula.

```
A\vee(B\wedgeC)\cong(A\veeB)^(A\veeC)
(B\wedgeC)\veeA\cong(B\veeA)^(C\veeA)
(A\wedgeB)\vee(C^D)\cong(A\veeC)^(A\veeD)^(B\veeC)^(B\veeD)
\[
\begin{aligned}
& A \vee(B \wedge C) \cong(A \vee B) \wedge(A \vee C) \\
& (B \wedge C) \vee A \cong(B \vee A) \wedge(C \vee A) \\
& (A \wedge B) \vee(C \wedge D) \cong(A \vee C) \wedge(A \vee D) \wedge(B \vee C) \wedge(B \vee D)
\end{aligned}
\]
OrP x y -> case (pushDisj x,pushDisj y) of
    (AndP a b,AndP c d) ->
        AndP (pushDisj (OrP a c))
            (AndP (pushDisj (OrP a d))
                (AndP (pushDisj (OrP b c))
                (pushDisj (OrP b d))))
    (a,AndP b c) ->
        AndP (pushDisj (OrP a b))
        (pushDisj (OrP a c))
    (AndP b c,a) ->
        AndP (pushDisj (OrP b a))
        (pushDisj (OrP c a))
    (x,y) -> OrP x y
    AbsurdP -> AbsurdP
    TruthP -> TruthP
(LetterP x) -> LetterP x
(AndP x y) -> AndP (pushDisj x) (pushDisj y)
(ImpliesP x y) -> pushDisj(OrP (NotP x) y)
(NotP x) -> NotP (pushDisj x)
```


Change representation

-- assumes all disj's are pushed inside -- so only literals appear inside OrP flatten:: Prop n -> [[Prop n]] flatten (AndP x y) = flatten x ++ flatten y flatten (OrP x y) = [collect [x,y]] where collect [] = []
collect (OrP x y : zs) =
collect (x:y:zs)
collect (z:zs) = z : collect zs
flatten x = [[x]]

Simplify

- Simplify (or remove disjunctions) that are always true
- [p1, p3, ~p1] \rightarrow remove
- $[\mathrm{p} 1, \mathrm{~T}] \rightarrow$ remove
- [p1,p2, p3] \rightarrow remove if there is another disjunction that subsumes it like [p1,p3]
simple:: Eq n =>
[[Prop n]] -> [[Prop n]]
simple [] = []
simple (x:xs)
| elem TruthP x = simple xs
| conjugatePair x = simple xs
| subsumes xs x = simple xs
| otherwise = x : simple xs

A principled approach

- Study the equivalence
$-(A \wedge B) \vee(C \wedge D) \cong$
$(A \vee C) \wedge(A \vee D) \wedge(B \vee C) \wedge(B \vee D)$
- Think of each disjunct as a list, then the result can be computed like this
- $[A, B] \bigvee[C, D]==\bigwedge[x \bigvee y \mid x<-[A, B], y<-[C, D]]$
- Take as input 2 lists of disjunctions, and apply the cross product rule

Representation

- process :: [Prop a] -> [[Prop a]]
- Think of the input as a list of disjunctions, so we want to take the cross product of all these disjunctions.
- If there are n-disjunctions then we'll have nn literals in each resulting inner disjunction
- We'll also have the product of the size of each disjunction as the number of conjunctions.

Applying Equivalences

- As we process the list of disjunctions we apply equivalences as we go.

Positive cases

process [] = [[]] process (p:ps) =
case p of
(AbsurdP) -> map (AbsurdP:) (process ps)
(TruthP) -> map (TruthP:) (process ps)
(LetterP _) -> map (p:) (process ps)
(AndP x y) -> process (x:ps) ++ process (y:ps)
(OrP x y) -> process (x : y : ps)
(ImpliesP x y) -> process(NotP x : y : ps)

Negative cases

```
process [] = [[]]
process (p:ps) =
    case p of
    (NotP z) ->
    case z of
    (AbsurdP) -> map (TruthP:) (process ps)
    (TruthP) -> map (AbsurdP:) (process ps)
    (LetterP _) -> map (p:) (process ps)
    (AndP x y) -> process (NotP x : NotP y : ps)
    (OrP x y) -> process (NotP x:ps) ++
        process (NotP y:ps)
    (ImpliesP x y) -> process (x:ps) ++
                                    process (NotP y:ps)
    (NotP p2) -> process (p2:ps)
```


Observations

- How big can a answer get? What is the complexity?
- Many of the cases are very similar.
- What are the three cases?
- Can we exploit this to write a shorter program?

