Scholarship Skills, Lecture 6

Scholarship Skills, Lecture 6

Scholarship Skills

Mathematical Notation

See Dupre, Segments 94, 118
Ita licize variables in the text
The loop exits when n exceeds m.
(If you use Latex, set variables in text in math mode)
The loop exits when $\$ \mathrm{n} \$ \mathrm{exceeds} \mathrm{\$ m} \$$.
But abbreviations (log, max, sin) a nd numerals should be roman $\log 2^{x}$
(Latex does this for you!)
\$ $\backslash \log 2^{\wedge} x$ \$
Be careful of similar symbols
A A
\$A \$ vs \$ $\mathbb{1}$ cal A \$ in Latex

Subscripts and Superscripts

A term is something added, a factor something multiplied
The a^{2} factor in $3 a^{2}(b+c)$
Try to a void subsc ripts and superscripts in computer science
Consider computing the greatest common divisor of n_{1} and n_{2}.
but engineering and physicswriting relies on them to indic ate vector, matrix, a nd tensor components, as well asitems in a sequence

$$
\begin{aligned}
& G_{\mu \nu}=8 \pi T_{\mu \nu} \\
& V_{i}=\sum_{i, j=1}^{M} A_{i j k} x_{j} x_{k} \\
& a_{i}, i=1,2, \ldots, N
\end{aligned}
$$

Little of computer science, engineering, or even physics is inherently deep enough to require double subscripts. Find a clearernotation.
How to avoid subscripts?

- different letters
- tum into function application

Scholarship Skills, Lecture 6

Simplify Notation

If you find $i-1$ is a subscript more often than i , consider using iand $\mathrm{i}+1$
$t_{i}=r_{i-1}+s_{i-1} / t_{i-1}$

Formulas

If a big messy formula occurs more than once, factor it out, especially if you want the reader to see the repetition

$$
\begin{aligned}
& 2^{b}+(a+1)^{i}(b+1)^{k-i}+c^{3} \\
& a^{2}(a+1)^{i}(b+1)^{k-i} b^{2}
\end{aligned}
$$

In a summation, "constants" should go first

$$
\sum_{i=1}^{N} T x_{i}
$$

Scholarship Skills, Lecture 6

Inline and Displayed Math

Math is set either in-line
... where $d=C_{0} f$ is the drag coefficient ...
orasa display object (in itsown indented paragraph)
the maximum likelihood estimator for the noise variance is

$$
\begin{equation*}
\sigma_{M L}^{2}=\frac{1}{d-q} \sum_{j=q+1}^{d} \lambda_{j} \tag{3.13}
\end{equation*}
$$

Anything longerthan about a dozen characters should be typeset as a display object.
Everything that you refer back to should be set as a display object and numbered!

If the formatting forces a line break in a math expression, typeset it as display object.
What about page breaks?

Ellipses in Expressions

Use baseline ellipses for a list
2, 4, 6, ... , 28
(in Latex)
\$ 2, 4, 6, ··· , 28 \$

Use centered ellipsesfor a series of operations
$2+4+6+\cdots+28$
(in Latex)
$\$ 2+4+6+$ \cdots +28

Scholarship Skills, Lecture 6

Make Sure Ellipses Can Be Filled in

Ask yourself if it's obvious how to fill in the sequence

$$
\begin{aligned}
& x, y, z, \ldots \\
& p_{1}, p_{2}, \ldots, q_{j}
\end{aligned}
$$

Numbering Equations

Displayed equationscan be set with or without numbers
Following simplification we obtain

$$
\mu=(a+b)^{5} \exp -(\lambda)
$$

This equality shows that ...
OR
Following simplification we obtain

$$
\begin{equation*}
\mu=(a+b)^{5} \exp -(\lambda) . \tag{5}
\end{equation*}
$$

Equation (5) shows that ...

Scholarship Skills, Lecture 6

Numbered vs. Un-Numbered Equations

I (Todd) rarely use un-numbered equations. It's not ta boo, but I reserve it for items that definitely won't need to be referred to

- later in the text
- by a reviewer
- by someone leading a reading group

Numbering Equations 2

Use numbers when you will need to refer back to the equation further along in the paper. Use numbers when the equation is a primary definition or result.

Recalling the expression for m in Equation (3),
is easieron the readerthan
Recalling the expression for μ derived above,

Scholarship Skills, Lecture 6

Numbering Equations 3

Numbering equations also facilitates the review process and discussion among readers.
"In Equation (3), the author ..." is easier than
"In the second equation following the first full paragraph in Section 2, the author ..."

Core Rule: Organize to Help the Reader

When to Include Mathematical Detail

Guideline: You should include enough detail so that someone well versed in the area can reproduce the results of the paper.

You can put lengthy derivations or proofs that break up the flow of the text into an appendix (but not when the technique used is part of the creative contribution of the paper).

Scholarship Skills, Lecture 6

When to Include Mathematical Detail

In conference papers or letters, space limitations preclude giving much detail.

But tell the reader in a few words how you a mived at the result. (Again, a reader well versed in the area should be able to reproduce the results.)

Instead of
We approximate equation (43) as .
use
Using the Green function for the operator in equation (27), expanding about $C=0$ and retaining terms through second order, we can approximate equation (43) as ...

Latex vs. WYSIWYG Editors

If you're going to write anything mathematic ally extensive (e.g. more involved than your zip code), leam Latex. (Todd speaking)

- Latex is easier to use than Equation Editor, MathType, or the equivalent (lame) tool in FrameMaker.

Markup languagesmake it easy to do global changesto va riable names, operator symbols, and formatting (such as changing spacing between operators and arguments).

Markup languages let you define macros for complex formulae or frequently used operators.

Markup languages frequently have well-designed specialized type elements like operators (e.g. integrals, summations), subscripts and superscripts. In Equation Editor, you have to fiddle with the spacings, font sizes, and offsets to get something attra ctive. This is a big waste of time, unless you consider yourself a Font Designer.

Scholarship Skills, Lecture 6

Latex vs WYSIWYG Editors

- LaTeX is SAFER than Equation Editor, MathType, or the equivalent (lame) tool in FrameMaker.

Equation Editor is mouse-intensive and so more likely to cause repetitive motion injuries.

- Unless you memorize the obscure hot-keys for Equation Editor or Ma thType, Latex is fa ster.

Latex commands are intuitive and quick to memorize.

Latex vs. WYSIWYG Editors

- Latex source is the standard for many engineering and physicsjoumal final submissions (and at least one computer science joumal). (Conferences usually specify camera-ready copy and offer formatting guides for several typesetting tools.)
- Latex math typesetting often looks a bit better than the default settings on Equation Editor, a nd it seems to scale better with overall size changes.

Scholarship Skills, Lecture 6

Final Thoughts on Math

Use some words following equations.
You should tell the readers the important conclusion they should draw from the equation. Don't assume that they'll get the thrust without making it clear.

This addition also forces you to interpret results, rather than just state them, a generally good intellectual process. It forces you to think about the results.

Scholarship Skills, Lecture 6

Footnotes and Parenthetical Comments

Use them sparingly.
If the main text is unclear or incomplete without the footnote or comment, it should probably be rewritten.

Don't use a footnote to rewrite something a lready stated in the main text. Instead, regard footnotes as parenthetic al remarks; that is, something the reader can skip the first time through without losing vital information.

A hash table (which is a frequent database access method) gives good performance on singleitem lookups. Other common access methods are ...

Figures and Tables

Put meaningful and informative captions on figures and tables
Table 3. Performance characteristics.
Table 3. Comparative performance of simulated annealing and Monte carlo methods on join planning.
Use distinct captions on different figures
Use the same name formats between text and figure.
(C ore Rule: Use a consistent lexical set.)
Buf1 Buf_1
You should have no tablesor figures that are not pointed to explicitly in the main text. Call out (or cite) every figure, table and graph in the text.

Tells the reader when to look at the figure ortable
Tell the reader what to notice in figures and tables. Don't a ssume they'll know what to attend to without telling them.

Scholarship Skills, Lecture 6

Captions

Include a figure ortable number.
Captions should be informative and describe all frames in the figure

Figure 2 (a) Plot of the posterior mean for each point in the latent space. (b) Plot of the 12-dimensional dat projected onto the 2 -dimensional
subspace that maximizes the negentropy.
(c) Plot of 12-dimensional data
projected onto 2-dimensional principal subspace.

Captions

Include a credit for material from a nother source -- copied or adapted.

Fig. 3 Univariate factor analysis of IQ test data. (Adapted from The Mismeasure of Man, Stephen J. Gould, W.W. Norton \& Co., 1996. Used with permission.)

Make sure that you do get permission before using such material!

Scholarship Skills, Lecture 6

Callouts

"Call out all figures, tables, programs ..."
(Dupré, Segment 62)
Figure 3(a)shows the results using a
nonlinear GTM mapping under the conditions
reported by Bishop et al. [4].
Use single numbers (as above) for artic les, double numbers such as"Figure 4.3(a) shows ..." for the third figure in the fourth chapter of a book or thesis.
The order of appearance of figures or tables should match the order that they are called out in the text.

Callouts

Capitalize the words "Figure" and "Table" when used with a number.

The results with this modified algorithm are shown in Figure 3.
Don't use a buried callout the first time you referto a figure ortable.

After the modification, the results are improved (see Figure 3).
However, you can use this format for subsequent references to the figure or table.

Scholarship Skills, Lecture 6

Callouts

If the figure ortable uses information from a nother source, give the credit in the figure caption, not the text. (Puts credit line close to information.)

As part of the callout, make sure to tell the readers what they should notice about the figure (ortable, orcode block). Don't assume that they will get the major point themselves. They might see something entirely different in the figure!

Make sure elements in the figure match the elements in the text

Tables

Numbertables and call them out in the text and tell the readerwhat to pay attention to in the table.

Give only information that you're going to discuss. (Avoid clutter, be concise ...)
Write a title orcaption foreach table.
Set off headers with a horizontal line.
Set off row labels with a vertical line.

Scholarship Skills, Lecture 6

Tables

Indic ate units in the column header.
Keep style consistent between tables.
Don't use too many vertic al and horizontal rule lines in the body of a table -- they add visual clutter. (They do help if tables have many lines.)
Align columns of numbers on the decimal point, and use leading zeros (e.g. 0.5).

Code

Use a different font for typesetting a code block, and indent the code block. Dupré (Segment 94) suggests using a monospace font such ascourier.

Monospace fonts use the same a mount of horizontal space foreach character, like a typewriter does.
(Does anyone remembertypewriters?)

Scholarship Skills, Lecture 6

Code

Some folks claim that you should distinguish code blocks further by using a sans-senff font for them if your text is set in a serif font -- or vice versa.

Serif Fonts -- Times Roman, Garamond, Palatino Sans Serif Fonts -- Arial, Helvetica, Luci da

Set large blocks of code as a numbered figure orbox.

Graphs

Keep graphs and charts uncluttered.

- Work as hard to make figures clearas you do to make yourtext clear.
- Only include information that you're going to refer to in the text.
Core Rules: Be Concise, Be Simple
Label axes!
Use REALY BIG fonts for axislabels and tick mark numbers. Your figure will be reduced in size when typeset.
(If you use MatLab to generate figures, use 16 point fonts or larger for the figure axes.)

Scholarship Skills, Lecture 6

Graphs

Independent axis generally goes along the bottom.
\#Processors

Graphs

Where severalcurvesordata point classes are given, use different line types or marking symbols and provide a legend. Keep fonts in the legend large so they're legible.

Look at Tufte's beautiful book The Visual
Display of Quantitative Information. Graphics Press, Cheshire, CT, 1983.

Scholarship Skills, Lecture 6

Lists

Keep lists and references to them in the same order
We cover three basic tree-traversal methods: in order, pre-order, and post-order. With pre-order, the parent node is visited ...
Consider setting off lists typographic a lly
Keep lists pure-readers assume that elements will be of like kind

Stony Brook Travel

Cruises
Airline Tickets
Trains
Golf Buffs

Lists 2

Watch for list splices
With a cache size of M, P_{1}, P_{2}, \ldots, P_{n} are accessed one-by-one.

Don't use etc. when the reader of the list is unlikely to fill in the rest of it.
The stable marriage problem has been explored by Floyd [21], Sedgewick [34], etc.

Scholarship Skills, Lecture 6

List Structure

From Dupré, Segment 26
In-text Lists -- short lists, together the entries a re a sentence. Separate entries are not sentences.
Separate entries should be separated by commas or semic olons.
We discuss three types of models: (1) parametric, (2) nonparametric, and (3) semi-parametric.

We discuss several types of models: parametric, nonparametric, and semiparametric.
Please do the following: Rewrite the exercise,
paying close attention to the core rules for
writing; read the assigned sections in the text; and complete the new exercise.

Lists

If at least one entry needs to be a complete sentence (with a period), then don't use a list format but instead use running text.

Our marketing strategy will include several actions. First, we will organize a kickoff meeting Second, we will write to ail the magazines in the field, and get them to review our product. Third, we will rent booths at several conferences. Finally we will purchase two mailing lists, and send out brochures.

Scholarship Skills, Lecture 6

Lists

Displayed lists

We tried several alternatives:

1. Unimodal density estimates
2. Mixture model density estimates
3. Parzen window density estimates

Scholarship Skills, Lecture 6

Tense

Try to use the present tense as much as possible. Reserve past tense for refeming to previous parts of the text.
A theorem stays true over time.
Recall that in Chapter 2 we proved that every integer had a unique prime factorization.
Look aga in if you find yourself changing tense in the middle of a paragraph.

Subjunctive, Idioms

Avoid the use of "would" if you a ctually did something.
Doubling the cache size would result in a third as many cache misses.

Be careful with idioms-will all your readers know them or be able to infer them from context?
The language LIKON is just a strawman.

Scholarship Skills, Lecture 6

Clarity

Don't intentionally try to baffle the reader.
A reader (or listener) is most impressed when he or she is leams something without a big struggle

Make sure material stands by itself
Don't rely on section headings
Section 3.2 Simulated Annealing This randomized method ...
Make sure tables have labels on columns and give units. Make sure graph axes are labeled.

Extra Information Can Confuse

 [Core Rule: Be concise.]Don't say "A or B " if $A=B$, unless
If duplicates are allowed, the algorithm will be $O\left(n^{2}\right)$ or quadratic.
Don't repeat information immediately
This class of applications requires multimodal interfaces with interactive response. These multimodal interfaces with interactive response can reduce

Scholarship Skills, Lecture 6

Ambiguity

 [Core Rule: Be clear.]Can your text be misread, or could it require backtracking.
The interface points to the database schema

Singular form in descriptionscan eliminate some ambiguity.
The databases have table definitions and constraints.
The -ing form of a verb - might modify verb phrase ornoun.
Kim transformed nested queries into flat queries using join.

Terminology

If you appropriate a term for a new concept, make sure it won't conflict with the common usage and that it has the right connotation.
We will call an algorithm big if its space complexity is quadratic or greater.
We will call a time series with sudden changes in direction goofy.
In creating and explaining tems, figure out what they are the "unit of"

Scholarship Skills, Lecture 6

Scholarship Skills, Lecture 6

Brevity

[Core Rule: Be concise.]
Wordiness ha mpers und ersta nd ing.
Leam to filter out "filler words" from your writing.
Try to remove words that are not specific to the doma in of discourse.
This change would create a situation where a query could give two answers.
The purpose of this attempt is to be able to measure the effect of double buffering.
The user needs an understanding of the underlying ...

Brevity 2

Seek words that advance the sentence. Do your wordsadd new information?
We investigate the process of data flow analysis.
If you are using a "perform" verb with a noun, look for a verb form of the noun.
The designer must make a judgement whether ...

Scholarship Skills, Lecture 6

During the course You Try It
In order to explore the ramifications of ...
Two potential problems that can occur when trying to combine a hash table with a Btree ...
This observation provides an explanation of the difference ...
We added a module for the management of exceptions ...
An explanation facility that would provide users with help in selecting the appropriate ...
We conducted interviews with four groups ...
In the face of this exciting opportunity, however, there are several changes that need to be made to existing query engines to make them applicable for the task of querying the Internet.
= David Maier \& Todd Leen

Repetition

Okay when used to clarify, or to keep sentences or cla uses pa rallel.

The search process proceeds from parent to child. Each child is visited after its parent.

