Silly Type Families*
DRAFT

Lennart Augustsson and Kent Petersson
Department of Computer Sciences
Chalmers University of Technology
S-412 96 Goteborg, Sweden
Email: augustss@cs.chalmers.se, kentp@cs.chalmers.se

September 10, 1994

Abstract

This paper presents an extension to standard Hindley-Milner type checking that
allows constructors in data types to have non-uniform result types. We use Haskell
as the sample language, [Hud92], but it should work for any language using H-M.
It starts with some motivating examples and then shows the type rules for a simple
language. Finally, it contains a sketch of how type deduction could be done.

1 Introduction

More of the usual ranting should go here.

This extension of H-M type checking has been floating around as a vague suggestion
in the FP community for many years, but we do not know of any attempt to work out the
details before. It has been inspired by how pattern matching works in ALF [Coq92, Mag],
but we want to do type deduction as well as type checking.!

2 Some motivating examples

2.1 Parsing

One way of writing parsers in a functional language is to use parsing combinators.? Parsing
combinators are higher order functions to combine parsers into new parsers. A more
detailed description of them can be found in [Bur75, Wad85|. There are many possible
implementations of them so we only give the signatures for them, see figure 1. The type
Parser a denotes a parser returning something of type a. The combinator alt takes
two parsers and gives one that parses either of the two alternatives. The seq combinator
combines two parsers into a new parser that parses in sequence and gives the pair of values
back. The act combinator is used to process values, 1it is used to recognize tokens (in

*In Swedish, “Lojliga typfamiljerna”
Tt can be debated if this is a good idea, but it is the spirit of Haskell.
2Tt can be argued that this is not a good way of writing parsers, but that is not important here.

our case just strings), and finally suc succeeds without examining the input. A parser and
evaluator for very simple expressions is shown in figure 2.

The parser expr has the problem that number occurs in both of the alternatives, which
means that unnecessary backtracking can occur. The remedy to this is to do left-factoring
of expr yielding the parser in figure 3. Unfortunately we cannot rewrite the parsing
combinators to do this factoring because they are just higher order functions and we need
to have some concrete representation of the grammar. The natural consequence of this is
to write a Grammar data type with constructors corresponding to the parsing combinators,
a function that left factors a grammar, and finally a function that translates a grammar
to a parser. Unfortunately the attempt to define the grammar type fails! What would it
be like? It should begin by:

data Grammar a
= Alt (Grammar a) (Grammar a)

But what would the definition of Seq look like? It cannot be formulated in a data type
declaration because we want it to have the type

Seq :: Grammar a -> Grammar b -> Grammar (a,b)

But the result type of a constructor is always the same as what is to the left of “=", in

this case Grammar a. So Seq fails, what about Act?
| Act (Parser b) (b->a)

This is not allowed in Haskell because the type variable b is free. But this can be handled
by extending Haskell with existential types as in [La4u92]. The last case (Lit) is again as
impossible as the second, while Suc is trivial.

The problem seems to be that we cannot specify the result type of constructors. We
therefore suggest the extension shown in figure 4. Here each constructors is given its full
type signature; the type given after data only serves as a template to give the name and
arity of the defined type.

The figure also defines a function, g2p, that translates a Grammar a into a Parser a.
This function may look type incorrect® at first, but in fact it cannot fail. A suspicious
line is g2p (Seq p q) = seq (g2p p) (g2p q). This appears to have typing g2p ::
Grammar (a,b) -> Parser (a,b), since Seq p q :: Grammar (a,b) . How can g2p
still have the more general type? The more general type implies that it should be able
to handle grammars of any type. And it does! The peculiar thing about Seq is that it
constructs values of a limited type, so g2p is indeed able to handle any value from the
Grammar type.

2.2 Typed syntax trees

In the previous example we showed an example where it is necessary to explicitly give the
type of the constructors of a polymorphic data type declaration. Another example where
this is necessary is if we want to define a type for type correct syntax trees (Expr x). In
the type we want constructors for constants

3Currently Haskell does not allow recursive calls to a function to occur at different types, but this may
change and is a minor point.

data Parser a

alt
seq ::
act
1lit
suc

expr ::

expr =

number ::
number

plus
plus =

expr ::

expr =
expr’

:: Parser a -> Parser a -> Parser a

Parser a -> Parser b -> Parser (a,b)

Parser Int

number
‘alt

number ‘seq‘ plus ‘seq‘ number

= 1it (all

1it (==||+||)

Parser Int

Parser Int

:: Parser b -> (b->a) -> Parser a
(String -> Bool) -> Parser String
a -> Parser a

Figure 1: Signatures for parsing combinators.

isDigit) ‘act‘ read

:: Parser String

Figure 2: A simple expression evaluator.

number ‘seq‘ expr’ fact \ (x, f) > f x

suc id
‘alt

plus ‘seq‘ number

‘act’ \ (L, y) > (+y)

Figure 3: A better expression evaluator.

fact’ \ (x,(_,y)) —> x+y)

data Grammar a

= Alt (Grammar a) (Grammar a) :: Grammar a
| Seq (Grammar a) (Grammar b) :: Grammar (a,b)
| Act (Grammar b) (b->a) :: Grammar a
| Lit (String -> Bool) :: Grammar String
| Suc a :: Grammar a
g2p :: Grammar a —> Parser a

g2p (Alt p q) = alt (g2p p) (g2p Q)
g2p (Seq p q) = seq (g2p p) (g2p Q)
g2p (Act p £) = act (g2p p) £

g2p (Lit £f) = 1lit f
g2p (Suc x) = suc x
Figure 4: Definition of the Grammar type and a translator.
Intc :: Int -> Expr Int

Boolc :: Bool -> Expr Bool
and for different operations, for example,

Add :: Expr Int -> Expr Int -> Expr Int
If :: Expr Bool -> Expr x -> Expr x -> Expr x

The problem here is the same as in the previous example, we cannot define the type since
the result type of the constructors must be equal and the same as the type we define.

If we allow the extension introduced above we could define a type for typed syntax
trees such as:

data Expr x

= Intc Int :: Expr Int
| Boolc Bool :: Expr Bool
| Add (Expr Int) (Expr Int) :: Expr Int
| Mul (Expr Int) (Expr Int) :: Expr Int
| Eqi (Expr Int) (Expr Int) :: Expr Bool
| Eqb (Expr Bool) (Expr Bool) :: Expr Bool
|

If (Expr Bool) (Expr x) (Expr x) :: Expr x

The elements of this type are typed syntax trees and it is possible to construct an element
such as

If (EqI (Intc 5) (Intc 0))
(Add (Intc 2) (Intc 5))
(Intc 0) :: Expr Int

but a type error to write

If (Intc 0)

Given this type we can for example define an interpreter in the following way:

interp :: Expr x -> x

interp (Intc i) =i

interp (Boolc b) =b

interp (Add el e2) = interp el + interp e2
interp (Mul el e2) = interp el * interp e2
interp (Eqi el e2) = interp el == interp e2
interp (Egqb el e2) = interp el == interp e2

interp (If el e2 e3) = if interp el
then interp e2
else interp e3

3 Type system

3.1 Syntax

In order to see how the typing rules for the new constructions should be defined, we
introduce a small functional language with the following (abstract) syntax:

e = = variables
| ¢ constructors
| caseeof cx —>e... case expression
| ee application

p == e | datada=c¢ ::S5 - T;... ;p

T == a| AT | T—T

where e € Expr, x € Variable, ¢ € Constructor, p € Program, A €
Typeld, a € TypeVar and T' € Type, & denotes several occurences
of x

3.2 Typerules

We define the type system for this language by a collection of type rules. There are two
two kinds of judgement in the rules

e I'F e: T that means: the expression e has type T in the type environment I’

e I d=1T that means: the declaration d generates the type environment I'

3.2.1 Declarations

decl
data Ax=¢; :: S;—T;... E ={¢; : V2.5, —T;} fypedec

Condition: T; < Az and FV(S;) C FV(T3)

d1 =14 d2:>F2

decl
dy ; do=T1 [FQ] eclseq
3.2.2 Expressions
To:TrFxz:T variables
T<T

constructors
7
T

Te:Thkec:

I'te:U ¢ S; —T; Ix;:S;0,Fe:Voy
I'Fcaseeof ¢ciao; > ¢;:V

case

where o; = mgu(U, T;)

I'te :T—T I'key:T
Fl—eleQ:T'

application

Of course, there should be some kind of soundness proof here, but who cares?

Comments about the case rules: e : U, i.e., e must be constructed by some constructor
that can yield a value of type U. If U = AT and ¢; is a constructor of type A with
type S; —T; then ¢; can construct an element in U if T; is unifyable with U. So if
mgu(U,T;) = o; then ¢; x;=>e; must have type T;0; — Uo;, since we know that c¢x; must
handle all elements of T;0;. This means that x; can be any element of type S;o;, i.e., €;
must have type Uo; under the assumtion z; : S;o;. Since z; can be any element of of type
S;o; we can not take a type less than S;0;, i.e., we may not instanciate variables in S;0;.

Example: Assume we have a type definition such as:*

=Cl :: a->A a
| C2 :: (Bool,b) -> A (Bool,b)
| C3 :: (Int,Bool) -> A (Int,Int)

1. Consider the following case-expressions and how it is type checked

4In the examples we will use tuples with their “usual” syntax

case y of

Cl x1 >1
C2 x2 > 2
C3 x3 -> 3

Let us first assume that y : Aa. The case-expression is type correct since all the
constructors have the type they are expected to have from the type declaration.

y:Aa mgu(Ada,Aa) ={}
zl:alk1:Int
mgu(Aa, A(Bool,b)) = {a = (Bool,b)}
2: (Bool,b) F 2 : Int
mgu(Aa, A(Int,Int)) = {a = (Int, Int)}
23 : (Int, Bool) - 3 : Int
case y of ---:Int

If we instead assume that y : A Int we can not type check the case-expression.

y: Alnt mgu(AInt, Aa) = {a = Int}
zl:Int 1 :1Int
mgu(AInt, A(Bool, b)) = FAIL
mgu(AInt, A(Int, Int)) = FAIL
case y of ---: FAIL

In order to make this example type correct we must exclude the second and third
case. These constructors can never construct any element in A Int.

Now let us see what happens if y : A (¢, Int)

y:A(c,Int) mgu(A(e,Int), Aa) = {a = (¢,Int)}
xl: (c,Int) - 1: Int
mgu(A (¢, Int), A(Bool, b)) = {¢ = Bool, b = Int}
x2 : (Bool,Int) F 1 : Int
mgu(A (¢, Int), A(Int, Int)) = {c = Int}
x3 : (Int, Bool) - 1 : Int

case y of ---:Int

2. Consider the program

case y of
C1 x1 > x1
C2 x2 -> 2
C3 x3 > 3

Assume y : Aa. This ought to be a type error since the first arm only handles a of
type Int.

y:Aa mgu(Ada,Aa) ={}
zl:ab zl:Int is NOT correct
mgu(Aa, A(Bool,b)) = {a = (Bool,b)}
2: (Bool,b) F 2 : Int
mgu(Aa, A(Int,Int)) = {a = (Int, Int)}
23 : (Int, Bool) - 3 : Int
case y of ---:Int

By assuming y : A Int the deduction would fail as in the second example.

3. Yet another program

case e of
Cl x1 -> case x1 of
(y1,y2) > 1
C2 x2 > 2
C3 x3 -> fst x3

And assume y : A(c,d) (to have a chance).

y:A(c,d) mgu(A c,d) Aa) ={a = (e, d)}

z3:
caseyof <o Int
4. Consider
case y of
Cl x1 > x1
C2 x2 -> x2

Assume y: Aa
y:Aa mgu(Aa,Aa) ={}

zl:alal:a
mgu(Aa, A(Bool, b)) = {a = (Bool,b)}
2 : (Bool, b) F x2 : (Bool, b)
caseyof ---:a

This would not work if we included
C3 x3 -> x3

because then the result type would not be the same as the type of y.

3.3 Type deduction

Definitely work in progress!! This is the only really interesting section, so it’s un-
fortunate that it’s not complete. :-)

The type rules (as usual) give very few clues on how to do type deduction. The problem
with the case rule is that it contains two types, U and V, that are only related to the
deduced types via some substitutions that are not obvious how to get.

The type deduction has the unpleasing property that a subpart that is considered type
correct when analysed locally can be found to be wrong when more information becomes
available.

The problem can be illustrated by the following example:

data Aa=Cl :: a ->A a
| C2 :: () -> A Int
fx=Nz-> ...z ...)
(case x of

Cly >y
Cc2 -> bottom)

When we process the case expression we can deduce that x :: Aa and that z :: a. If 2z
is used so that its type is not further specialized or specialized to Int then the program
is correct, but if z is used, say, as a Bool, then we must conclude that z :: Bool and thus
x :: A Bool. But this makes the C2 pattern illegal since C2 :: A Int.

This means that there must be restrictions on some of the type variables that say that
they can only be instanciated in certain ways (in the example a can remain a variable or
become an Int). So attached to a type there will also be constraints® of the kind T} < a;
(in the example Int < a).

The type deduction (of case) goes along the following lines:

e Approximate U by Aa, compute the o; and from that (via type deduction) V; = Vo;.
If the type deduction puts any constraints on U then iterate this step with the new
U until it converges (or fails).

e This gives a set of equations V; = Vo; where V is unknown. Solve® for V.

e Attach constraints on the type variables in V' showing that they cannot be instanti-
ated arbitrarily.

e Take care of e (as function application with U — V).

4 Conclusion

Even if this extension allows a few more programs to be written and type
checked, it is by no means “magic”. Before it was impossible to write a

5The constraints can be encoded as a substitition, which must be checked for compatibility whenever
the type variables are instantiated.
5Does anyone know a good way of doing this? The current solver is exponential.

function “interp :: Expr -> a” that takes a syntax tree and returns its value.
Now we can write “ interp :: Expr a-> a” that does this, but we cannot write
“parse :: String -> Expr a”, whereas “parse :: String -> Expr” can be written.
We have just moved the boundary. In general it is hard to write interesting functions
that contruct values our new data values from data values that are not “tagged” by types.
Data, in general, has to be manifest in the program, but it can now be type checked in a

way that was not possible before.

5 Acknowledgments

The author with a window to the south would like to thank the construction crews building
the extension to the mathematical center for entertainment. Thierry Coquand helped us
understand how ALF works. A big thanks also goes to all the last minute writersworkers
for company, food, and proofreading.

References

[Bur75] W. H. Burge. Recursive Programming Techniques. Addison-Wesley Publishing
Company, Reading, Mass., 1975.

[Coq92] Thierry Coquand. Pattern matching with dependent types. In Proceeding from
the logical framework workshop at Bastad, June 1992.

[Hud92] Paul Hudak et al. Report on the Programming Language Haskell: A Non-Strict,
Purely Functional Language, March 1992. Version 1.2. Also in Sigplan Notices,
May 1992.

[Ladu92] Konstantin Laufer. Polymorphic Type Inference and Abstract Data Types. PhD
thesis, Department of Computer Science, New York University, New York City,
USA, 1992.

[Mag] Lena Magnusson. The new Implementation of ALF. In To appear in the informal
proceeding from the logical framework workshop at Bastad, June 1992.

[Wad85] P. Wadler. How to Replace Failure by a List of Successes. In Proceedings 1985
Conference on Functional Programming Languages and Computer Architecture,
pages 113-128, Nancy, France, 1985.

