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ABSTRACT
We study the problem of gossiping where n nodes equipped with radios are placed
on a ring of circumference L. Each radio has a transmission range of 1 and we assume
that simultaneous transmissions by neighboring nodes results in garbled messages. We
present an algorithm for gossiping and show that it works in asymptotically optimal
time.

1. Introduction

Gossiping is a problem related to information dissemination in communication
networks. In gossiping every node in the system has a piece of information (a secret)
that needs to be communicated to everyone else. For given system configurations we
are interested in developing transmission schedules that ensure gossiping completes
in the shortest possible time.

Gossiping algorithms have been studied for a variety of models. In most models,
communication between a pair of nodes is modeled as a telephone call during which
the two nodes exchange all the information each of them has collected thus far. The
edge set determines the set of allowable calls. Let us represent each possible call
by an edge in a graph whose n vertices represent the n nodes in the system. In [4]
the authors present results for gossiping in several graph-based models including
the complete graph model. Other researchers have studied the problem of gossip-
ing on hypergraphs [5], grid graphs {3] and trees [11]. Placing restrictions on the
allowable sequence of calls yield further generalizations called the NODUP model
(NO DUPlication) [12] and the NOHO model (No One Hears Own) [9,13].

*Partial funding for this work was provided by the NSF under grant number NCR-9410357.
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In this paper we consider a network consisting of nodes that communicate via
radio. One important application of gossiping in such networks is the dispersal of
positional information for purposes of routing. In our model each node is equipped
with a radio transmitter. Thus, when a node transmits, all others within range
hear the message (if there is no other simultaneous transmission). Simultaneous
transmissions result in collisions where all information contained in the messages
is lost. We assume that the nodes are unaware of the system-wide topology and
base transmission decisions on knowledge of local topological information only. In
particular we assume that nodes know the location of all others within distance 1
(the transmission radius) and that they know their distance from some central spot
(point 0 around the circle in a clockwise direction).

We have studied the problem of gossiping in linear configurations (i.e. all nodes
lie on a line) in [7]. In this paper we extend those results to the case where nodes
are placed randomly on a ring. This model is interesting because it is a first step to
solving the far more complex problem of gossiping in two dimensions where nodes
are placed on a plane (the ring is the simplest model where there are two distinct
paths between any pair of nodes).

The algorithm presented in this paper is asymptotically optimal in the sense
that for a given € > 0, for large enough n (number of nodes), we construct a
gossiping algorithm whose gossiping time is within (1 + €) times the lower bound.
The algorithm is distributed as well in the sense that every node bases transmission
decisions on positional information local to it and on the history of transmissions
thus far.We assume that the system topology remains fixed for the duration of the
gossip. This is a reasonable assumption because transmission times are much faster
as compared to time for nodes to move about.

2. The Model

In this paper, we consider a model in which nodes are placed on a ring and
every node has a transmitter with a transmission radius 1. Nodes ¢ and j are
within range of each other if the distance between them is less than 1. We study only
connected configurations where each node has a path to every other — i.e. each node
is reachable from every other via a series of transmissions. Furthermore, we only
consider the case where there are two node-disjoint paths (excluding the starting
and terminating nodes) between all pairs of nodes. Let us call the set of all such
connected configurations C,. The other case, where there are no two node-disjoint
paths between any pair of nodes, is equivalent to gossiping on a line and has been
studied in [7].

An important aspect of our model deals with the problem of simultaneous trans-
missions. If a node receives two or more transmissions at the same time then we
say that a collision has occurred. This means that the node does not receive the
message(s). It is important to note that the transmitting nodes may or may not be
aware that a collision has occured. Consider the two collision scenarios illustrated in
Fig. 1. In the first kind of collision two or more nodes within transmission range of
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each other (i.e. the distance between them is less than 1) transmit simultaneously,
see Fig. 1(a). In this case all three nodes hear noise. The second kind of collision
is possible when three nodes 1, 2 and 3 are placed in such a way that node 3 is
within range of both 1 and 2. If 1 and 2 transmit simultaneously, node 3 hears
noise, however neither 1 nor 2 is aware that 3 heard noise because they cannot hear
each others transmission, see Fig. 1(b).

| |
I I
L 1 1 1
1 1 1 ]
R | |
L 1 1 | 1 ]
1 2 3 1 3 2
(a) (b)

Fig. 1. Node 3 hears noise if 1 and 2 transmit simultaneously.

Finally, we assume that time is slotted and the system is synchronous. A trans-
mission lasts exactly one slot and during a transmission a node can transmit all
secrets it has collected thus far. We are interested in developing transmission
algorithms that minimize the time taken to gossip.

3. Broadcasting on the Ring

Broadcasting refers to the restricted problem of gossiping when the secrets of
only one node have to be disemminated to the rest of the system. We have studied
the problem of broadcasting over a line [0, L] in [6] where we show that the time
to broadcast, By, , is L, when,

L,~n%0<a<l1

and is aL,, when,
L,~an,a>0.
For the case of the ring we observe that the time to broadcast is bounded below,
for all cases, by,
L
By, >—/
Ln 25

where L,, is the circumference of the ring with n nodes such that there exist two
node-disjoint paths between any pair of nodes. This is easy to see because,

e the broadcast originating at some node can proceed simultaneously in two
directions,
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e the maximum distance a broadcast can proceed in either direction during one
time step (one transmission) is 1, the range of the radio transmitter.

This lower bound is used later to show that our gossiping algorithm is asymptotically
optimal.

4. Gossiping

The gossiping problem is more complicated than the broadcasting problem be-
cause of the possibility of simultaneous transmissions by several nodes. As in many
papers on gossiping, we assume that during a transmission by a node (which lasts
one time step) all the secrets it possesses are transmitted.

4.1. Overview

Our algorithm proceeds in two phases. During the first phase, the idea is to
allow all nodes to transmit their secrets at least once so that a smaller set of nodes
(wn,1) collectively know all secrets. To do this efficiently the algorithm allows as
many nodes as possible to transmit simultaneously. In the second phase, w, 1 € n
broadcasts are initiated (in both directions). These broadcasts collect all secrets as
they proceed. When all these broadcasts terminate, gossiping is complete.

4.2. Gossiping Algorithm

Given a connected configuration of nodes on the ring of circumference L, let us
divide it into clusters of size 1+1/m. Each cluster is further divided into smaller sub-
clusters of size 1/m (for some m to be chosen appropriately, as discussed in the next
section), see Fig. 2. Let these subclusters be labeled c11, ¢12,..., €1,m41, €21, -+,
etc. Let us assume that the kth cluster contains ¢ < m + 1 subclusters, i.e.

mL=(m+1)(k-1)+gq.

sub-clusters

Fig. 2. Subcluster structure on the ring.
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If ¢ = m + 1 then the subclusters of the kth clusters are cxy,..., Ck,my1 (see
Fig. 3(a)). If ¢ < m + 1 then the subclusters are numbered, Chkym—q+1r+++» Ckym+1,
(see Fig. 3(b)).

| | [ T T | |
c c c c ¢ ¢ c
k1 k2 km 11 12 13 im  1,m+1
(a)g=m+1
k-1,m+1 € an
.o+ -
21
H | ]
t
(] . '1/ [+ c c c
k,m-q+1 km 11 12 13 1m  1,m+]

(b)yg<m+1

Fig. 3. Naming clusters.

Algorithm 1

Phase 1: Some steps in this phase of the algorithm are similar to Algorithm 2 pre-
sented in our earlier paper [7]. This phase achieves information collection on a local
level (we assume that all nodes begin this phase of the algorithm simultaneously).
That is, at the end of phase 1, in any arc of length ! we can identify [ + ¢ (for some
constant ¢) nodes who collectively know the secrets of all nodes that lie within this
arc.

1. The algorithm proceeds in m + 1 stages. During each stage 7, all nodes in sub-
cluster c;, Vi, transmit their secrets in a left to right order (i.e. in clockwise
order). The rightmost node r;; of subcluster c;; (see Fig. 4) hears all transmis-
sions made by nodes in c;; correctly (note that sub-clusters may be empty in
which case there is no node r;; and this step is trivial). Observe that clusters Cij
and c;4,,; are distance 1 + 1/m apart and thus there is no interference.
Transmissions within cluster c;; are initiated when node r;; transmits a SIGNAL.
Node 7;; knows the total number of nodes to its right within distance 1. It
counts the number of transmissions (by listening to successful transmissions and
collisions) that occur in subclusters Cit1,1y--+y Ci+1,j—1. When the number of
transmissions heard is equal to the number of nodes in ¢;41 1, . . ., Cit+1,5—1 (which
are within distance 1 of r;;) then it sends a signal. Note that nodes rx; in the
kth cluster count the transmission in subclusters of cluster c;.

2. At the end of the above step, the secrets of each subcluster c;j are contained in
node ;. Next, these secrets are disseminated to all nodes to the right of Ti;8
within distance 1.
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Let us rename the nodes r;;. If r;; lies within arc [t—1, ¢] and is the vth such node
in that arc, name it s;,. Thus all nodes ry; in [0, 1] are renamed $;,, 1 < v < m.
Nodes in [1, 2] are renamed $3,, 1 < v < m. Node r1,;m41 is renamed 831, T2 18
renamed 3823, etc.

Consider arc [t — 1, t]. Let the rightmost node be sf and the leftmost be s;
(note that the rightmost node does not have to be s¢m and similarly the leftmost
need not be s;1). sf listens to subcluster transmissions from the previous step.
When it detects that all transmissions have completed it transmits a SIGNAL to
sF in an odd time step if ¢ is odd or in an even time step if ¢ is even. s detects
completion of transmissions by a method similar to the one used in step 1 above.
After sL = s¢; receives the signal, it waits until step 1 transmissions to its left
have completed. It then transmits all its accumulated secrets in the next odd
or even time step (depending on whether ¢ is odd or even). Its transmission is
received correctly by at least s¢ j4+1. S¢,;+1 transmits all accumulated secrets in
the next even or odd numbered time step, etc. At the end of this process, when
3R hears the transmission from its left, it transmits all accumulated secrets in
the next (odd/even) time step. Thus, all secrets of nodes in interval [t —1, ¢] are
made known to nodes in an interval of length at least 1 around sf.

Two problems arise in this algorithm:

(a) if k is odd (in Fig. 2) then, according to the algorithm above, step 2 trans-
missions in [0, 1] and [L — 1, L] could occur at the same time resulting in
collisions and a violation of the stated result. To avoid this problem, we
ensure that step 2 transmissions do not begin until all step 1 transmissions
in [0, 1] have completed.

(b) if |L) < L (i.e. L is not an integer) then even if [|L], L] is an even num-
bered arc, there is a potential for collisions in step 2 transmissions between
transmissions from [0, 1] and [[L] — 1, |L]]. To alleviate this problem it
is necessary to delay step 2 transmissions in [|L] — 1, |L]] until all step 2
transmissions in [0, 1] have been completed.

In either of these two cases, this step of the algorithm requires at most m more
steps to complete.

No nodes

Last node r,
i

Fig. 4. Rightmost node in c;;.
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Phase 2: Let us divide the ring into w arcs of length [ = L/w each. These arcs are
0,1, [I, 2,..., [L = I, L]. Identify w nodes b1, bs,..., by such that b; is a node
closest to the left endpoint of the ith arc. All nodes between b; and b;4y (inclusive)
form the ith sector S;.

Node b; listens to transmissions on either side within distance 1. When it detects
completion of phase 1 transmissions on both sides, it initiates a broadcast (i.e. it
transmits all secrets it possesses) to its left (i.e. anti-clockwise) and to its right
(i.e. clockwise). These broadcasts “collect” all information as they proceed. These
broadcasts proceed around the ring. When b;’s anti-clockwise broadcast meets
b;—1’s clockwise broadcast in a sector other than sector S;_i, they destroy each
other (i.e. they are not forwarded any more).

At any time there may be as many as w broadcasts proceeding in a clockwise
direction and an equal number proceeding in the anti-clockwise direction. When
any two broadcasts moving in opposite directions cross one another it results in
a collision and an added time complexity of at most ¢; time steps for each of the
two broadcasts because one of the colliding broadcasts will have to ‘wait’ while
the other passes by.

4.8. Complezity

The complexity of phase 1 can be divided into two parts — the time to complete
local transmissions within each subcluster and the time to disemminate the secrets
of each cluster to nodes within distance 1 of the rightmost node in the cluster. Let
n;; denote the number of nodes within subcluster c;;. A bound on the time to
complete local transmissions within subclusters is,

Am,n = (m + 1)Mm,n

where,
My n = maxn;
1’7]

The time.to disemminate secrets within distance 1 of nodes sf is com for some
constant ¢. Thus, the complexity for phase 1 is,

Am,n + cam

The complexity of phase 2 is the time taken for each of the 2w broadcasts to
end. This time is bounded by,

Ty,r £ B +wa + By

where By, is the time to broadcast over the ring and B is the time to broadcast
over a sector of length [. ¢, is the cost when two broadcasts moving in opposite
directions collide.
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5. Asymptotic Results

Theorem 1. (Lower Bound for time needed to Gossip) Let G, be the random
variable (over the probability space of connected configurations) which denotes the
minimum number of time steps required to gossip when there are m nodes in
the system.

. n
(a‘) hmn—»oo Pn (Gn > L_n

(b) G, 2 Bt in all cases

+BL—logn> =1 if limn_.w%g=ca>0,0<a<1

where B, is the time required to broadcast.

Proof. Part (a): For any sequence of transmissions, observe that at the end of
n/L, — 1th step at least L, nodes have not transmitted their information. At
least one of these L, nodes lies within a distance logn to the right of 0 with a
probability approaching 1 (please see [7] for a detailed proof of this statement).
The minimum number of steps required to get this node’s secret all the way across
the configuration is then B, — logn. This yields a total number of steps equal to
n/L + Br —logn. '

Part (b): Proof is trivial. a
Lemma 1. Let L,/n* - ¢>0asn— 00,0 < a<1. Then,
P.(C,) = lasn— o0

where C,, is the set of all connected configurations over the ring. If we identify the
point L,, with 0, P, denotes the product measure on [0, L,)™ with uniform marginals
(i.e. all possible placements of n nodes on the ring without regard for connectedness).

The proof of this lemma is easy and is similar to Lemma 1 in [7].

Theorem 2. IfL~n% 0<a <1, thenVe>0,

lim lim P,

m— 00 N-—00

(Am,n +com+ B+ B +cw

1 0
n/Ln+BL > +€)—-—>

Proof. Since %‘L £ 1, % £, 1 and w is a fixed constant independent of n it is
sufficient to show that,

Am,n +com + BL
n/L, + B

lim lim Pn(

m-—00 n—00

>1+e> -0

The proof of this limit follows from Theorem 2 in [7]. o

Theorem 3. IfL,~on,0<a<1, thenVe>0,
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lim P,

n—o0

(Al,n +c2+ By,

B, >1+e)—>0

Proof. The ring T (of circumference L), can be coordinatized by specifying the
angle 8, 0 < 8 < 2r that the radius vector makes with a fixed direction as shown
below.

s

A configuration of n nodes in T is an element of the n-torus T™, which is coordi-
natized by an ordered n-tuple (6;, 6,..., 0,), 0; € T. We now define a family of
bijections from T™ into [0, L) parameterized by R (set of real numbers).
Let,
yeER=U,:T" — [0, L)"

where

Uy((8y, s, .., 6)) = ((%L) L ytiod DL, (g—;L — y(mod L)))

where B denotes the Borel sigma algebra, [1] (we define y(mod L) = z where
y = kL + z for some integer k). Let P, and P!, denote the product measure with
uniform marginals on T™ and [0, L)" respectively. Then Vy € R, U, is a measure
preserving map from,

(T™, B(T™), B,) into ([0, L)", B([0, L)), P.)

Let C!, C [0, L)™ denote the set of connected configurations in [0, L)". These are
the configurations with the property that the distance between successive nodes is
less than or equal to one. While the definition of connection in T is intuitively
clear, the formal definition is more complicated since there are two ways to measure
the distance between two points on T'.

Let w € T™. We relabel Up(w) such that ; < z3 < -+ < z, (where the z;
denote the node positions). Now Up(w) € CJ, or Up(w) ¢ C,,. If Up(w) ¢ Cy, let,

d= 221é1n{z|xi —zi > 1}

clearly x4 € [k — 1, k] for some k, 2 < k < L. If Ug_1(w) € C,, we say that w is a
connected configuration in T™.
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l WAV, | AV4 1\1 J
Uo (w) /AW AT —>¢7¢ > 1
k-1 k

lose :XXLVV |
qc-l(W) AR | I 1

Definition. C, C T™, Cp = {w € T™"|Unm(w) € C},} for some m,0 <m < [L] - 1.

Partition T and [0, L) into subintervals of length 1/m. Let w € T™ and w' € [0, L)™.
Let,

. 2]
= il—= >
[ =inf {Jlntl- _27r}
and w = (64, 62,..., 0n),
. 2r 2w
#{z|0,~ € [—mL(k— 1), mLk)} -1

#{i|0i € [%(1—1), 27r>} if k=1

where #{...} denotes the number of elements in the set. Then,

ne(w) =

M n(w) = jmax, e (w)

Appn=m+1)Mp 5.
Similarly let @' = (z1, T2,..., Tn)

#{ime | )} r<k<i-

I
N = I —
#{i|x,~€[ , L } fk=1.

o

-1

3=

b

d

31
S—

Then,

M, (') = max 7;(w)

and,
A =(m+ 1M,
nx and 7, are the number of nodes in the kth subintervals in T and [0, L) respec-

tively. Let,
A, = {w € Cu|Up(w) € Cp}.

Clearly,
[L1-1

U 4,=C..

p=0
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Let P, and P, denote the restriction of P, and P',, to C, and Cj, respectively. If
w € A, then w’' = U,(w) € C},. We note that,

Apn(w) = A,m,n(w,)

[L]-1
Pi(Amn 2 [6Ln]) S D Pa(Bmn 2 |6La), 4)

p=0
=3 (Al o(Up(w)) 2 (8Ln), 45).

Now using the fact that U, is a bijection and is measure preserving we have,

Pro(Arn n(Up(w)) 2 |6Ln], 4p) = Po(Ann 2 |6Ln), UpAy) .

m,n =

Therefore we have,

Pu(Ampn 2 [8L4]) < [LalPp(An 5 2 |6Ln)).

Let m = 1, we need to estimate,

Ain+c+ B Al n Co
3 n — ' 3 1 .
Pn< B, >1l+e¢ P, B, +_BL +1>1+¢€

n

n n

Since %—’;ﬂ- L, 4> 0it is sufficient to estimate P,(A;,n > |6L~]). We have shown

that, -
Po(A1,n 2 [8L4]) £ [La]Pp(AY,n 2 [6Ln))

From theorem 3 in [7] we have,
Pi(A} > |6La)) < e7CLEn],

Therefore,
limoo Pa(A1,n 2 |6L,]) =0

This proves that, ¥Ye > 0,

Pn (Al,n +c2 + BL,.

B, >1+e)—>0

n

6. Conclusions

We have studied the problem of gossiping in a system where nodes, equipped
with radio transmitters, are placed on a ring. The gossiping algorithm presented
is asymptotically optimal. This work builds upon earlier results for the case of
broadcasting and gossiping on a line presented in [6-8]. The next step, we believe,
is to study the much harder problem of gossiping in two dimensions. We believe
the results reported in this paper will prove very useful in solving some models in
2D (e.g. gossiping on a lattice) where information can travel between two nodes via
multiple paths (note that in the line, information can travel along one path only, in
the ring there are two paths).
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