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Abstract
It is well known that filtering low-quality data
before pretraining language models or selecting
suitable data from domains similar to down-
stream task datasets generally leads to im-
proved downstream performance. However,
the extent to which the quality of a corpus,
in particular its complexity, affects its down-
stream performance remains less explored. In
this work, we address the problem of creating
a suitable pretraining corpus given a fixed cor-
pus budget. Using metrics of text complexity
we propose a simple yet effective approach for
constructing a corpus with rich lexical varia-
tion. Our extensive set of empirical analyses
reveal that such a diverse and complex corpus
yields significant improvements over baselines
consisting of less diverse and less complex cor-
pora when evaluated in the context of general
language understanding tasks.

1 Introduction

The recent trend in training language models (LM)
has been to use increasingly larger text corpora
(Khandelwal et al., 2019; Kaplan et al., 2020;
Borgeaud et al., 2021). While this approach gen-
erally does improve downstream performance, it
comes at a substantial computational cost. An-
other line of research has found that increasing the
pretraining data does not always improve the per-
formance on downstream tasks (Martin et al., 2019;
Dai et al., 2019; Shin et al., 2022). In response,
numerous studies have explored approaches such
as utilizing pretraining corpora that are domain spe-
cific or using data filtering to reduce the size of the
pretraining corpus, while improving downstream
task performance (Beltagy et al., 2019; Lee et al.,
2020; Grave et al., 2018; Raffel et al., 2019; Brown
et al., 2020; Agrawal et al., 2021). The shortcom-
ing of these methods is that the pretrained LM may
be very specific to the selected tasks, and therefore,
show limited generalizability to other downstream
tasks, or require heuristic filtering techniques. In

this paper, we explore a different approach and
investigate whether improving the complexity of
the pretraining corpus can yield improved model
performance. The implication is that rather than
arbitrarily increasing the size of a corpus as is done
today, increasing its complexity might yield higher
performance but at a lower computational cost.

Intuitively it is easy to compare a children’s book
with a college textbook and state that the latter is
more complex. Unfortunately, providing a general
formal definition is fraught because books of differ-
ent genres are complex in different ways (e.g., post-
modern vs a biography). However, there have been
attempts made to characterize complexity using rea-
sonable measures such as vocabulary size, syntactic
complexity, and semantic richness (Jensen, 2009).
In this paper we use metrics that derive from these
linguistic measures including types, type-token ra-
tio, entropy, and Flesch reading ease to estimate
corpus complexity.

In this work we use five distinct corpora of equal
size but varying complexity to pretrain LMs. The re-
sulting models are then fine-tuned and evaluated on
downstream tasks from the GLUE benchmark. Our
results suggest that a corpus containing a breadth
of complexity from easy to hard but one that is
skewed towards hard makes an effective corpus as
evaluated in general language understanding tasks.

The key contributions of our paper include: (i)
We propose a simple approach for constructing a
lexically rich and complex corpus for pretraining
of language models; (ii) We conduct an extensive
set of experiments by pretraining several language
models from scratch on corpora of differing com-
plexity, and then evaluating these models on a di-
verse set of downstream tasks; (iii) We analyze our
results to estimate the correlation between corpus
complexity, its similarity to downstream data, and
its performance on various downstream tasks.



2 Related Work

Below, we briefly review two broadly related
threads of research.

Data selection. Ruder and Plank (2017) pro-
posed several similarity and diversity measures for
assessing the suitability of data for transfer learning.
Dai et al. (2019) studied the problem of selecting
appropriate corpus for pretraining in the context
of Named Entity Recognition (NER) downstream
tasks, and found that language models pretrained
on source text similar to the target task outperform
the ones pretrained on other sources (with one ex-
ception). Gururangan et al. (2020) compared the
vocabulary overlap between pretraining sources
and target domain corpora, and found that the pre-
trained model performs slightly better when target
domain is less distant than source domain, but not
in all the cases. Lange et al. (2021) studied the
selection of source data for transfer learning.

Selecting data from similar domains as down-
stream tasks for pretraining of domain-specific
language models has generally been shown to be
beneficial, e.g., SciBERT (Beltagy et al., 2019),
BioBERT (Lee et al., 2020). However, prior work
has also observed that this trend does not always
hold true (Martin et al., 2019; Shin et al., 2022).
Dai et al. (2020) found that models pretrained on
forums corpus (0.6B tokens) outperformed those
trained on tweets corpus (0.9B tokens) on both
forums- and tweets-related downstream tasks, as
well as a significantly larger generic BERT model
(3.3B tokens), highlighting the importance of do-
main similarity of corpus over its size.

Data engineering. In a complementary line of
research, it is observed that engineering the data
by filtering (Grave et al., 2018; Raffel et al., 2019;
Brown et al., 2020; Rae et al., 2021; Kreutzer et al.,
2022), or reordering (Agrawal et al., 2021; Nagat-
suka et al., 2021; Li et al., 2021; Wang et al., 2023)
a corpus can also improve quality.

Diverging from previous studies, our research fo-
cuses on examining the influence of the complexity
of a pretraining corpus on downstream tasks related
to general language understanding. To accomplish
this, we introduce a straightforward methodology
for constructing a corpus that embodies richness
and complexity.

3 Method

Let C be an unlabeled pretraining corpus of |C| to-
tal tokens, consisting of a vocabulary set VC , i.e.,

the unique tokens or types in C. Similarly, let D be
a labeled downstream dataset with total number of
tokens |D| and a vocabulary set VD. Given a fixed
corpus budget (e.g., number of tokens), we first
need to construct corpora of various complexity.
Then, the goal is to measure the similarity between
these corpora and downstream datasets, and esti-
mate the correlation between this similarity and
performance.

We first present some metrics for assessing the
complexity of a corpus and for computing the simi-
larity between two collections of text – the pretrain-
ing corpus and the downstream datasets in subsec-
tions 3.1 and 3.2, before describing the procedure
for creating corpora of varying complexity in sub-
section 3.3.

3.1 Text Complexity

We consider three metrics for estimating the com-
plexity of a text corpus.

Types. This is the number of types or unique tokens
in a corpus (i.e., its vocabulary).

Type-Token Ratio (TTR). Lexical complexity can
also be indexed via TTR – the higher the ratio, the
greater the lexical diversity in the sample (Johnson,
1944). Although TTR is often sensitive to length
of the texts, for analyzing corpora of comparable
sizes, it can serve as a useful metric (Johansson,
2008), and is computed as TTR(C) = |VC |

|C| .

Entropy. Broadly speaking, entropy is a mea-
sure of randomness or disorder (Shannon, 1948;
Fano, 1961), and the greater the number of differ-
ent words in a text, the higher its entropy, or, con-
ceptually, its complexity. We calculate the unigram
entropy of C as follows:

H(C) = −
|VC |∑
i=1

p(wi) log2 p(wi)

where p(wi) is the probability of type wi in C.

3.2 Text Similarity

We adopt two well-defined measures to estimate
the similarity between two pieces of text, such as
the pretraining corpus C and a downstream dataset
D.

Vocabulary Overlap Ratio (VOR). This computes
the percentage of word types that appear in both the
texts (VC and VD) – a higher ratio indicates higher



similarity, and is calculated as:

V OR(C,D) =
|VC ∩ VD|

|VD|
.

Jensen-Shannon divergence (JSD). This metric
measures the distance between two texts (Lin,
1991), and D(JS) is defined as:

D(JS)(P ||Q) = α1D
(KL)(P ||M)

+ α2D
(KL)(Q||M)

where M = α1P+α2Q, and P and Q are the prob-
ability distributions of two texts (e.g., a pretraining
corpus C and a downstream dataset D, in our case).
The values of α1 and α2 are set as 0.5 each. D(KL)

is Kullback-Leibler divergence, a measure for com-
paring the differences in two texts, and is defined
as, D(KL)(P ||Q) =

∑
i pi log

pi
qi

.

3.3 Constructing Corpora with Varying
Complexity

The complexity of a corpus can be summarized
by using metrics including number of types, type-
token ratio, and entropy (section 3.1). However,
in order to create a corpus according to varying
complexity we need a more fine-grained metric
that can compute complexity at document (or even
paragraph) level. One such metric is the Flesch
reading ease (FRE) score, commonly used to assess
the difficulty of a piece of text (Flesch, 1948).

For a document di ∈ C, its FRE score is com-
puted as:

FRE(di) = 206.835−1.015

(
#w

#s

)
−84.6

(
#l

#w

)
where #w, #s, and #l denote the number of
words, sentences, and syllables in di, respectively.
The word and sentence length serve as proxies for
semantic and syntactic complexity, respectively.
Note that texts with high FRE scores tend to display
lower complexity (e.g., children’s books), while an
editorial in the New York Times which has a much
greater complexity, shows lower FRE scores. Thus,
our approach for creating a more complex corpus is
to combine pieces (paragraphs or documents) from
existing corpora based on their FRE score.

Our method starts by adopting two text corpora
widely used for pretraining of language models:
wiki-103, a subset of English Wikipedia (Merity
et al., 2016) and BookCorpus, a large collection of
books (Zhu et al., 2015). From these, we construct
the following corpora:

Figure 1: FRE distribution of the corpora. Lower FRE
indicates higher complexity. wikibooks spans the
full spectrum of complexity, consisting of both low and
high complexity, but mostly skewed towards the latter.

• wiki: This is the wiki-103 corpus as is con-
sisting of approximately 100 million tokens.

• books-small, books-easy,
books-hard: Next, we create a
comparably-sized corpus of ∼100M to-
kens, called books-small, by randomly
sampling books from BookCorpus. Then, for
each book in BookCorpus, we compute its
FRE score and create two relevant baselines:
books-easy by combining books of lowest
complexity (i.e., the highest FRE scores), and
conversely, books-hard by using books
with the highest complexity (i.e., the lowest
FRE scores).

• wikibooks: Finally, we hypothesize that
a complex and rich corpus encompasses a
blend of texts with varying levels of com-
plexity, albeit with a predominant inclination
towards more intricate texts. We speculate
that this composition would allow it to cap-
ture the nuanced linguistic aspects present in
a wide range of texts. To create such a corpus,
which we call wikibooks, we first sample
some articles from wiki-103 and books from
BookCorpus of varying complexity (i.e., FRE
scores ranging from high to low), and then
use up the remaining corpus quota by sam-
pling texts of mostly high complexity (low
FRE scores).

Figure 1 plots the FRE distribution of each of
the five corpora. As we can see, books-easy,
books-hard, and books-small span a nar-
row range of complexity all skewing towards less
complex; wiki has moderate to high complexity;
and wikibooks is the only one to contain text



Corpus Tokens Types TTR (%) Entropy

wiki 104M 267K 0.26 7.375
books-easy 120M 258K 0.22 6.294
books-hard 111M 417K 0.38 6.826
books-small 116M 346K 0.29 6.483
wikibooks 109M 436K 0.40 7.179

Table 1: Characteristics of different pretraining corpora.

Figure 2: Comparison of (unweighted) average GLUE
score, across five different pretraining corpora under
varying number of training steps (10K, 20K, 30K).

from the broadest range of complexity, with most
of the mass concentrated in the highest complex-
ity range, but also some in the lowest complexity
range.

3.4 Downstream Datasets and
Implementation

We use eight datasets from the General Language
Understanding Evaluation (GLUE) benchmark in
our experiments, which includes CoLA, MNLI,
MRPC, QNLI, QQP, RTE, SST-2 and STS-B
(Wang et al., 2018).

Text tokenization is done using NLTK1, and
FRE scores are computed using Readability pack-
age2. Using the different corpora, we pretrain from
scratch different versions of BERT-base model3

(Devlin et al., 2019). The training continues for
at most 30K steps. Checkpoints saved after 10K,
20K, and 30K steps are then fine-tuned over the
downstream datasets for two epochs each.

1We use NLTK tokenizer: https://www.nltk.org/
api/nltk.tokenize.html.

2We use Readability package: https://pypi.org/
project/readability/ To account for the length-
based differences in Wikipedia articles and Books, we ran-
domly but sequentially select a subset of 1000 sentences for
each book when computing its FRE.

3We use the uncased version, with 12 transformer layers,
batch size set to 8, maximum length of the input sequence set
to 512, and all other settings set as default. All pretraining and
fine-tuning experiments are performed using HuggingFace
library (Wolf et al., 2019).

4 Discussion

Our work investigates: (i) whether document-level
metric such as FRE can be used to construct cor-
pora of varying complexity, (ii) whether corpora of
higher complexity lead to improvements in down-
stream performance, (iii) whether a complex cor-
pus is more similar to downstream data, and (iv)
the correlation between complexity, similarity, and
performance.

Whether FRE can help create suitably complex
corpus. Table 1 summarizes the details of all cor-
pora, where we see that wikibooks, which con-
tains a mix of low and high complexity text, has
the highest number of types and TTR, and second
highest entropy. This suggests the effectiveness of
using a computationally simple metric such as FRE
in the construction of corpora with diverse levels
of complexity. Moreover, we also notice that there
is no corpus in our sample with a unigram entropy
of less than six bits/word, which is in line with
information-theoretic models of communication
(Bentz et al., 2017).

Analyzing corpus complexity and downstream per-
formance. Figure 2 presents the results of average
scores across eight downstream datasets obtained
using models pretrained with five different corpora
under varying number of training steps. We make
several observations: (i) Three out of five corpora
yield increasingly better results as the training con-
tinues, except books-easy and books-small
which show the opposite trend. On the one hand,
this suggests that simply training for longer time
does not always guarantee a monotonically increas-
ing performance score. On the other hand, it also
indicates that training on fairly less complex cor-
pora (cf. Fig. 1) is generally less effective.

In connecting the results of Figure 2 with com-
plexity metrics reported in Table 1, we observe
that wikibooks, a corpus that is comparatively
more complex than any other containing the most
number of types and highest TTR, consistently out-
performs all others at each of the three training
milestones. At the other end of the spectrum is the
worst performing corpus books-easy with the
fewest types, lowest TTR, and the lowest entropy.

Analyzing similarity between pretraining corpus
and downstream datasets. Now, we assess the
similarity between corpus complexity and down-
stream dataset to investigate whether a complex
corpus provides greater alignment with the down-

https://www.nltk.org/api/nltk.tokenize.html
https://www.nltk.org/api/nltk.tokenize.html
https://pypi.org/project/readability/
https://pypi.org/project/readability/


(a) Similarity (VOR) between pretraining corpus and down-
stream dataset (darker shades indicate higher similarity)

(b) Correlation between similarity (VOR) and performance (pos-
itive correlation is better)

Figure 3: (top) Similarity (VOR) between pretraining
corpora and downstream datasets (train). (bottom) Pear-
son’s correlation analysis (similarity and performance).

stream data. Figure 3a shows that wikibooks
is more similar to all the downstream datasets as
compared to the other corpora, confirming the in-
tuition that a corpus with richer vocabulary subse-
quently has increased similarity with downstream
data. As a further analysis, Figure 3b shows
a moderate to high correlation between corpus-
downstream dataset similarity and performance
for most datasets, which increasingly becomes
stronger as training progress. Similar trends hold
for JSD (included in Appendix A). These findings
indicate that pretraining using a corpus that is simi-
lar to the downstream datasets is generally benefi-
cial, and VOR provides a computationally simple
way of estimating this similarity.

Analyzing performance, complexity, and similar-
ity. Figure 4 presents Kendall’s Tau correlation
analysis for all three factors: complexity, similar-
ity, and performance. In looking at the last row in
particular (i.e., performance of the ‘30K’ model)
we observe that performance is strongly correlated
with VOR, which in turn is strongly correlated with
metrics of complexity (types, TTR, and entropy).
Taken together, these results suggest that a more

Figure 4: Kendall’s Tau analysis comparing perfor-
mance, complexity, and similarity. Darker shades indi-
cate better correlation except for JSD, where a lighter
shade (negative correlation) is desirable.

complex corpus leads to better downstream evalua-
tion performance.

5 Conclusions

We investigate whether pretraining on a corpus with
higher complexity subsequently yields improved
performance in downstream evaluations. Within
this study, we construct corpora of diverse complex-
ities by using straightforward metrics like Flesch
Reading Ease, and estimate corpus-level complex-
ity using metrics such as unique word types or
type-token ratio. The results of our extensive em-
pirical analysis, which involves training language
models from scratch using five distinct corpora of
varying text complexity and evaluating their per-
formance across eight downstream tasks, suggest a
strong correlation between corpus complexity, its
similarity to downstream data, and the resulting
performance on these tasks. One interesting direc-
tion for future research involves exploring the the
findings of this study in the context of generative
language models.

Limitations

One limitation of our work is that we use what is
now considered as relatively ‘small-sized’ model
and corpora only from English language originat-
ing from generic domains such as Wikipedia arti-
cles and books – whether our findings will general-
ize to corpora of much larger sizes, or from other
languages, or from other domains such as medical,
remains to be seen.
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A Similarity Analysis

Figure 5 presents the results of similarity analysis
and Pearson’s correlation analysis using Jensen-
Shannon divergence.

(a) JSD (lighter shades indicate higher similarity)

(b) JSD (negative correlation is better)

Figure 5: (top) Similarity between pretraining corpora
and downstream datasets (train set) using JSD. The last
column ‘average’ presents the average results of all
the datasets. (bottom) Pearson’s correlation analysis
between JSD and performance at 10K, 20K, and 30K
step checkpoints.
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